📄 dct_lms_c.m
字号:
function [W, e, Lambda] = dct_lms_C(u, d, M, alpha, beta, gamma, verbose)% function [W, e, Lambda] = dct_lms_C(u, d, M, alpha, beta, gamma, verbose)%% dct_lms_C.m - use DCT-LMS algorithm with recursions on C to estimate
% optimum weight vectors for linear estimation% (written for MATLAB 4.0).%% Reference: Ch.10 of Haykin, _Adaptive Filter Theory_, 3rd ed., 1996%%% Input parameters:% u : vector of inputs (real scalars)% d : vector of desired outputs% M : final order of predictor% alpha : base step size for weight updates% beta: : remembering factor for sliding DCT coefficient updates% gamma : forgetting factor for estimated eigenvalue updates% verbose : set to 1 for interactive processing%% Output parameters:% W : row-wise matrix of Hermitian transposed weights% at each iteration% e : row vector of prediction errors at each time step% Lambda : row-wise matrix of estimates of process eigenvalues% at each iteration
% Copyright (c) 1994-1999 by Paul Yee% length of maximum number of timesteps that can be predictedN = min(length(u),length(d));% initialize weight matrix and associated parameters for LMS predictorW = zeros(M, N+1);Lambda = zeros(M, N);m = [0:(M-1)]';k = ones(M, 1); k(1) = 1 / sqrt(2);W2M = exp(-j * pi / M);W2M2 = exp(-j * pi / 2 / M);W2Mm = exp(-j * pi * m / M);W2M2m = exp(-j * pi * m / 2 / M);F1 = W2M2m;F2 = conj(W2M2m);y = zeros(N, 1);e = zeros(N, 1);Lambda_n1 = zeros(M, 1);n = M;i = n-M+1:n;C1n1 = W2M.^(m*(n-i)) * u(i);C2n1 = W2M.^(m*(i-n+2*M-1)) * u(i);% C1n1 = (-1).^m .* W2M2m .* C1n1;% C2n1 = (-1).^m .* W2M2m .* C2n1;for n = M+1:N % C1(:, n) = F1 .* (beta * F1 .* C1n1 + u(n) * (-1).^m - beta * u(n-M) * ones(M, 1));% C2(:, n) = F2 .* (beta * F2 .* C2n1 + u(n) * (-1).^m - beta * u(n-M) * ones(M, 1));% C(:, n) = 1/2 * k .* (C1(:, n) + C2(:, n));C1(:, n) = W2M.^m .* C1n1 + u(n) * ones(M, 1) - u(n-M) * (-1).^m;% i = n-M+1:n;% A1(:, n) = W2M.^(m*(n-i)) * u(i);C2(:, n) = W2M.^(-m) .* (C2n1 + u(n) * ones(M, 1) - u(n-M) * (-1).^m);% A2(:, n) = W2M.^(m*(i-n+2*M-1)) * u(i);C(:, n) = 1/2 * k .* (-1).^m .* W2M2.^m .* (C1(:, n) + C2(:, n));% C(:, n) = 1/2 * k .* (-1).^m .* W2M2.^m .* (A1(:, n) + A2(:, n));% i = n:-1:n-M+1;% C(:, n) = k .* (cos(m * (i-n+M-1/2) * pi / M) * u(i)); % compare with standard DCT algorithm % un = u(n:-1:n-M+1); % Cn(:, n) = dct(un); C1n1 = C1(:, n); C2n1 = C2(:, n); % predict next sample and compute error y(n) = W(:, n).' * C(:, n); e(n) = d(n) - y(n); if (verbose ~= 0) disp(['time step ', int2str(n), ': mag. pred. err. = ', num2str(abs(e(n)))]); end; % adapt eigenvalue estimate and weight vectors, adjusting for % offset of M+1 in starting index for eigenvalue step size Lambda(:, n) = gamma * Lambda_n1 + 1 / (n-M) * (C(:, n).^2 - gamma * Lambda_n1); Lambda_n1 = Lambda(:, n); W(:, n+1) = W(:, n) + alpha ./ Lambda(:, n) .* C(:, n) * e(n); end; % for n% discard last update to W since no more data to predictW = W(1:M, 1:N);end; % dct_lms
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -