📄 imftiledoutputfile.cpp
字号:
// Create a new BufferedTile, copy the pixelData into it, and
// insert it into the tileMap.
//
ofd->tileMap[currentTile] =
new BufferedTile ((const char *)pixelData, pixelDataSize);
}
}
void
convertToXdr (TiledOutputFile::Data *ofd,
Array<char>& tileBuffer,
int numScanLines,
int numPixelsPerScanLine)
{
//
// Convert the contents of a TiledOutputFile's tileBuffer from the
// machine's native representation to Xdr format. This function is called
// by writeTile(), below, if the compressor wanted its input pixel data
// in the machine's native format, but then failed to compress the data
// (most compressors will expand rather than compress random input data).
//
// Note that this routine assumes that the machine's native representation
// of the pixel data has the same size as the Xdr representation. This
// makes it possible to convert the pixel data in place, without an
// intermediate temporary buffer.
//
//
// Set these to point to the start of the tile.
// We will write to toPtr, and read from fromPtr.
//
char *writePtr = tileBuffer;
const char *readPtr = writePtr;
//
// Iterate over all scan lines in the tile.
//
for (int y = 0; y < numScanLines; ++y)
{
//
// Iterate over all slices in the file.
//
for (unsigned int i = 0; i < ofd->slices.size(); ++i)
{
const TOutSliceInfo &slice = ofd->slices[i];
//
// Convert the samples in place.
//
convertInPlace (writePtr, readPtr, slice.type,
numPixelsPerScanLine);
}
}
#ifdef DEBUG
assert (writePtr == readPtr);
#endif
}
//
// A TileBufferTask encapsulates the task of copying a tile from
// the user's framebuffer into a LineBuffer and compressing the data
// if necessary.
//
class TileBufferTask: public Task
{
public:
TileBufferTask (TaskGroup *group,
TiledOutputFile::Data *ofd,
int number,
int dx, int dy,
int lx, int ly);
virtual ~TileBufferTask ();
virtual void execute ();
private:
TiledOutputFile::Data * _ofd;
TileBuffer * _tileBuffer;
};
TileBufferTask::TileBufferTask
(TaskGroup *group,
TiledOutputFile::Data *ofd,
int number,
int dx, int dy,
int lx, int ly)
:
Task (group),
_ofd (ofd),
_tileBuffer (_ofd->getTileBuffer (number))
{
//
// Wait for the tileBuffer to become available
//
_tileBuffer->wait ();
_tileBuffer->tileCoord = TileCoord (dx, dy, lx, ly);
}
TileBufferTask::~TileBufferTask ()
{
//
// Signal that the tile buffer is now free
//
_tileBuffer->post ();
}
void
TileBufferTask::execute ()
{
try
{
//
// First copy the pixel data from the frame buffer
// into the tile buffer
//
// Convert one tile's worth of pixel data to
// a machine-independent representation, and store
// the result in _tileBuffer->buffer.
//
char *writePtr = _tileBuffer->buffer;
Box2i tileRange = Imf::dataWindowForTile (_ofd->tileDesc,
_ofd->minX, _ofd->maxX,
_ofd->minY, _ofd->maxY,
_tileBuffer->tileCoord.dx,
_tileBuffer->tileCoord.dy,
_tileBuffer->tileCoord.lx,
_tileBuffer->tileCoord.ly);
int numScanLines = tileRange.max.y - tileRange.min.y + 1;
int numPixelsPerScanLine = tileRange.max.x - tileRange.min.x + 1;
//
// Iterate over the scan lines in the tile.
//
for (int y = tileRange.min.y; y <= tileRange.max.y; ++y)
{
//
// Iterate over all image channels.
//
for (unsigned int i = 0; i < _ofd->slices.size(); ++i)
{
const TOutSliceInfo &slice = _ofd->slices[i];
//
// These offsets are used to facilitate both absolute
// and tile-relative pixel coordinates.
//
int xOffset = slice.xTileCoords * tileRange.min.x;
int yOffset = slice.yTileCoords * tileRange.min.y;
//
// Fill the tile buffer with pixel data.
//
if (slice.zero)
{
//
// The frame buffer contains no data for this channel.
// Store zeroes in _data->tileBuffer.
//
fillChannelWithZeroes (writePtr, _ofd->format, slice.type,
numPixelsPerScanLine);
}
else
{
//
// The frame buffer contains data for this channel.
//
const char *readPtr = slice.base +
(y - yOffset) * slice.yStride +
(tileRange.min.x - xOffset) *
slice.xStride;
const char *endPtr = readPtr +
(numPixelsPerScanLine - 1) *
slice.xStride;
copyFromFrameBuffer (writePtr, readPtr, endPtr,
slice.xStride, _ofd->format,
slice.type);
}
}
}
//
// Compress the contents of the tileBuffer,
// and store the compressed data in the output file.
//
_tileBuffer->dataSize = writePtr - _tileBuffer->buffer;
_tileBuffer->dataPtr = _tileBuffer->buffer;
if (_tileBuffer->compressor)
{
const char *compPtr;
int compSize = _tileBuffer->compressor->compressTile
(_tileBuffer->dataPtr,
_tileBuffer->dataSize,
tileRange, compPtr);
if (compSize < _tileBuffer->dataSize)
{
_tileBuffer->dataSize = compSize;
_tileBuffer->dataPtr = compPtr;
}
else if (_ofd->format == Compressor::NATIVE)
{
//
// The data did not shrink during compression, but
// we cannot write to the file using native format,
// so we need to convert the lineBuffer to Xdr.
//
convertToXdr (_ofd, _tileBuffer->buffer, numScanLines,
numPixelsPerScanLine);
}
}
}
catch (std::exception &e)
{
if (!_tileBuffer->hasException)
{
_tileBuffer->exception = e.what ();
_tileBuffer->hasException = true;
}
}
catch (...)
{
if (!_tileBuffer->hasException)
{
_tileBuffer->exception = "unrecognized exception";
_tileBuffer->hasException = true;
}
}
}
} // namespace
TiledOutputFile::TiledOutputFile
(const char fileName[],
const Header &header,
int numThreads)
:
_data (new Data (true, numThreads))
{
try
{
header.sanityCheck (true);
_data->os = new StdOFStream (fileName);
initialize (header);
}
catch (Iex::BaseExc &e)
{
delete _data;
REPLACE_EXC (e, "Cannot open image file "
"\"" << fileName << "\". " << e);
throw;
}
catch (...)
{
delete _data;
throw;
}
}
TiledOutputFile::TiledOutputFile
(OStream &os,
const Header &header,
int numThreads)
:
_data (new Data (false, numThreads))
{
try
{
header.sanityCheck(true);
_data->os = &os;
initialize (header);
}
catch (Iex::BaseExc &e)
{
delete _data;
REPLACE_EXC (e, "Cannot open image file "
"\"" << os.fileName() << "\". " << e);
throw;
}
catch (...)
{
delete _data;
throw;
}
}
void
TiledOutputFile::initialize (const Header &header)
{
_data->header = header;
_data->lineOrder = _data->header.lineOrder();
//
// Check that the file is indeed tiled
//
_data->tileDesc = _data->header.tileDescription();
//
// Save the dataWindow information
//
const Box2i &dataWindow = _data->header.dataWindow();
_data->minX = dataWindow.min.x;
_data->maxX = dataWindow.max.x;
_data->minY = dataWindow.min.y;
_data->maxY = dataWindow.max.y;
//
// Precompute level and tile information to speed up utility functions
//
precalculateTileInfo (_data->tileDesc,
_data->minX, _data->maxX,
_data->minY, _data->maxY,
_data->numXTiles, _data->numYTiles,
_data->numXLevels, _data->numYLevels);
//
// Determine the first tile coordinate that we will be writing
// if the file is not RANDOM_Y.
//
_data->nextTileToWrite = (_data->lineOrder == INCREASING_Y)?
TileCoord (0, 0, 0, 0):
TileCoord (0, _data->numYTiles[0] - 1, 0, 0);
_data->maxBytesPerTileLine =
calculateBytesPerPixel (_data->header) * _data->tileDesc.xSize;
_data->tileBufferSize = _data->maxBytesPerTileLine * _data->tileDesc.ySize;
//
// Create all the TileBuffers and allocate their internal buffers
//
for (size_t i = 0; i < _data->tileBuffers.size(); i++)
{
_data->tileBuffers[i] = new TileBuffer (newTileCompressor
(_data->header.compression(),
_data->maxBytesPerTileLine,
_data->tileDesc.ySize,
_data->header));
_data->tileBuffers[i]->buffer.resizeErase(_data->tileBufferSize);
}
_data->format = defaultFormat (_data->tileBuffers[0]->compressor);
_data->tileOffsets = TileOffsets (_data->tileDesc.mode,
_data->numXLevels,
_data->numYLevels,
_data->numXTiles,
_data->numYTiles);
_data->previewPosition = _data->header.writeTo (*_data->os, true);
_data->tileOffsetsPosition = _data->tileOffsets.writeTo (*_data->os);
_data->currentPosition = _data->os->tellp();
}
TiledOutputFile::~TiledOutputFile ()
{
if (_data)
{
{
if (_data->tileOffsetsPosition > 0)
{
try
{
_data->os->seekp (_data->tileOffsetsPosition);
_data->tileOffsets.writeTo (*_data->os);
}
catch (...)
{
//
// We cannot safely throw any exceptions from here.
// This destructor may have been called because the
// stack is currently being unwound for another
// exception.
//
}
}
}
delete _data;
}
}
const char *
TiledOutputFile::fileName () const
{
return _data->os->fileName();
}
const Header &
TiledOutputFile::header () const
{
return _data->header;
}
void
TiledOutputFile::setFrameBuffer (const FrameBuffer &frameBuffer)
{
Lock lock (*_data);
//
// Check if the new frame buffer descriptor
// is compatible with the image file header.
//
const ChannelList &channels = _data->header.channels();
for (ChannelList::ConstIterator i = channels.begin();
i != channels.end();
++i)
{
FrameBuffer::ConstIterator j = frameBuffer.find (i.name());
if (j == frameBuffer.end())
continue;
if (i.channel().type != j.slice().type)
THROW (Iex::ArgExc, "Pixel type of \"" << i.name() << "\" channel "
"of output file \"" << fileName() << "\" is "
"not compatible with the frame buffer's "
"pixel type.");
if (j.slice().xSampling != 1 || j.slice().ySampling != 1)
THROW (Iex::ArgExc, "All channels in a tiled file must have"
"sampling (1,1).");
}
//
// Initialize slice table for writePixels().
//
vector<TOutSliceInfo> slices;
for (ChannelList::ConstIterator i = channels.begin();
i != channels.end();
++i)
{
FrameBuffer::ConstIterator j = frameBuffer.find (i.name());
if (j == frameBuffer.end())
{
//
// Channel i is not present in the frame buffer.
// In the file, channel i will contain only zeroes.
//
slices.push_back (TOutSliceInfo (i.channel().type,
0, // base
0, // xStride,
0, // yStride,
true)); // zero
}
else
{
//
// Channel i is present in the frame buffer.
//
slices.push_back (TOutSliceInfo (j.slice().type,
j.slice().base,
j.slice().xStride,
j.slice().yStride,
false, // zero
(j.slice().xTileCoords)? 1: 0,
(j.slice().yTileCoords)? 1: 0));
}
}
//
// Store the new frame buffer.
//
_data->frameBuffer = frameBuffer;
_data->slices = slices;
}
const FrameBuffer &
TiledOutputFile::frameBuffer () const
{
Lock lock (*_data);
return _data->frameBuffer;
}
void
TiledOutputFile::writeTiles (int dx1, int dx2, int dy1, int dy2,
int lx, int ly)
{
try
{
Lock lock (*_data);
if (_data->slices.size() == 0)
throw Iex::ArgExc ("No frame buffer specified "
"as pixel data source.");
if (!isValidTile (dx1, dy1, lx, ly) || !isValidTile (dx2, dy2, lx, ly))
throw Iex::ArgExc ("Tile coordinates are invalid.");
//
// Determine the first and last tile coordinates in both dimensions
// based on the file's lineOrder
//
if (dx1 > dx2)
swap (dx1, dx2);
if (dy1 > dy2)
swap (dy1, dy2);
int dyStart = dy1;
int dyStop = dy2 + 1;
int dY = 1;
if (_data->lineOrder == DECREASING_Y)
{
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -