📄 imatheuler.h
字号:
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
#ifndef INCLUDED_IMATHEULER_H
#define INCLUDED_IMATHEULER_H
//----------------------------------------------------------------------
//
// template class Euler<T>
//
// This class represents euler angle orientations. The class
// inherits from Vec3 to it can be freely cast. The additional
// information is the euler priorities rep. This class is
// essentially a rip off of Ken Shoemake's GemsIV code. It has
// been modified minimally to make it more understandable, but
// hardly enough to make it easy to grok completely.
//
// There are 24 possible combonations of Euler angle
// representations of which 12 are common in CG and you will
// probably only use 6 of these which in this scheme are the
// non-relative-non-repeating types.
//
// The representations can be partitioned according to two
// criteria:
//
// 1) Are the angles measured relative to a set of fixed axis
// or relative to each other (the latter being what happens
// when rotation matrices are multiplied together and is
// almost ubiquitous in the cg community)
//
// 2) Is one of the rotations repeated (ala XYX rotation)
//
// When you construct a given representation from scratch you
// must order the angles according to their priorities. So, the
// easiest is a softimage or aerospace (yaw/pitch/roll) ordering
// of ZYX.
//
// float x_rot = 1;
// float y_rot = 2;
// float z_rot = 3;
//
// Eulerf angles(z_rot, y_rot, x_rot, Eulerf::ZYX);
// -or-
// Eulerf angles( V3f(z_rot,y_rot,z_rot), Eulerf::ZYX );
//
// If instead, the order was YXZ for instance you would have to
// do this:
//
// float x_rot = 1;
// float y_rot = 2;
// float z_rot = 3;
//
// Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ);
// -or-
// Eulerf angles( V3f(y_rot,x_rot,z_rot), Eulerf::YXZ );
//
// Notice how the order you put the angles into the three slots
// should correspond to the enum (YXZ) ordering. The input angle
// vector is called the "ijk" vector -- not an "xyz" vector. The
// ijk vector order is the same as the enum. If you treat the
// Euler<> as a Vec<> (which it inherts from) you will find the
// angles are ordered in the same way, i.e.:
//
// V3f v = angles;
// // v.x == y_rot, v.y == x_rot, v.z == z_rot
//
// If you just want the x, y, and z angles stored in a vector in
// that order, you can do this:
//
// V3f v = angles.toXYZVector()
// // v.x == x_rot, v.y == y_rot, v.z == z_rot
//
// If you want to set the Euler with an XYZVector use the
// optional layout argument:
//
// Eulerf angles(x_rot, y_rot, z_rot,
// Eulerf::YXZ,
// Eulerf::XYZLayout);
//
// This is the same as:
//
// Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ);
//
// Note that this won't do anything intelligent if you have a
// repeated axis in the euler angles (e.g. XYX)
//
// If you need to use the "relative" versions of these, you will
// need to use the "r" enums.
//
// The units of the rotation angles are assumed to be radians.
//
//----------------------------------------------------------------------
#include "ImathMath.h"
#include "ImathVec.h"
#include "ImathQuat.h"
#include "ImathMatrix.h"
#include "ImathLimits.h"
#include <iostream>
namespace Imath {
#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
// Disable MS VC++ warnings about conversion from double to float
#pragma warning(disable:4244)
#endif
template <class T>
class Euler : public Vec3<T>
{
public:
using Vec3<T>::x;
using Vec3<T>::y;
using Vec3<T>::z;
enum Order
{
//
// All 24 possible orderings
//
XYZ = 0x0101, // "usual" orderings
XZY = 0x0001,
YZX = 0x1101,
YXZ = 0x1001,
ZXY = 0x2101,
ZYX = 0x2001,
XZX = 0x0011, // first axis repeated
XYX = 0x0111,
YXY = 0x1011,
YZY = 0x1111,
ZYZ = 0x2011,
ZXZ = 0x2111,
XYZr = 0x2000, // relative orderings -- not common
XZYr = 0x2100,
YZXr = 0x1000,
YXZr = 0x1100,
ZXYr = 0x0000,
ZYXr = 0x0100,
XZXr = 0x2110, // relative first axis repeated
XYXr = 0x2010,
YXYr = 0x1110,
YZYr = 0x1010,
ZYZr = 0x0110,
ZXZr = 0x0010,
// ||||
// VVVV
// Legend: ABCD
// A -> Initial Axis (0==x, 1==y, 2==z)
// B -> Parity Even (1==true)
// C -> Initial Repeated (1==true)
// D -> Frame Static (1==true)
//
Legal = XYZ | XZY | YZX | YXZ | ZXY | ZYX |
XZX | XYX | YXY | YZY | ZYZ | ZXZ |
XYZr| XZYr| YZXr| YXZr| ZXYr| ZYXr|
XZXr| XYXr| YXYr| YZYr| ZYZr| ZXZr,
Min = 0x0000,
Max = 0x2111,
Default = XYZ
};
enum Axis { X = 0, Y = 1, Z = 2 };
enum InputLayout { XYZLayout, IJKLayout };
//----------------------------------------------------------------
// Constructors -- all default to ZYX non-relative ala softimage
// (where there is no argument to specify it)
//----------------------------------------------------------------
Euler();
Euler(const Euler&);
Euler(Order p);
Euler(const Vec3<T> &v, Order o = Default, InputLayout l = IJKLayout);
Euler(T i, T j, T k, Order o = Default, InputLayout l = IJKLayout);
Euler(const Euler<T> &euler, Order newp);
Euler(const Matrix33<T> &, Order o = Default);
Euler(const Matrix44<T> &, Order o = Default);
//---------------------------------
// Algebraic functions/ Operators
//---------------------------------
const Euler<T>& operator= (const Euler<T>&);
const Euler<T>& operator= (const Vec3<T>&);
//--------------------------------------------------------
// Set the euler value
// This does NOT convert the angles, but setXYZVector()
// does reorder the input vector.
//--------------------------------------------------------
static bool legal(Order);
void setXYZVector(const Vec3<T> &);
Order order() const;
void setOrder(Order);
void set(Axis initial,
bool relative,
bool parityEven,
bool firstRepeats);
//---------------------------------------------------------
// Conversions, toXYZVector() reorders the angles so that
// the X rotation comes first, followed by the Y and Z
// in cases like XYX ordering, the repeated angle will be
// in the "z" component
//---------------------------------------------------------
void extract(const Matrix33<T>&);
void extract(const Matrix44<T>&);
void extract(const Quat<T>&);
Matrix33<T> toMatrix33() const;
Matrix44<T> toMatrix44() const;
Quat<T> toQuat() const;
Vec3<T> toXYZVector() const;
//---------------------------------------------------
// Use this function to unpack angles from ijk form
//---------------------------------------------------
void angleOrder(int &i, int &j, int &k) const;
//---------------------------------------------------
// Use this function to determine mapping from xyz to ijk
// - reshuffles the xyz to match the order
//---------------------------------------------------
void angleMapping(int &i, int &j, int &k) const;
//----------------------------------------------------------------------
//
// Utility methods for getting continuous rotations. None of these
// methods change the orientation given by its inputs (or at least
// that is the intent).
//
// angleMod() converts an angle to its equivalent in [-PI, PI]
//
// simpleXYZRotation() adjusts xyzRot so that its components differ
// from targetXyzRot by no more than +-PI
//
// nearestRotation() adjusts xyzRot so that its components differ
// from targetXyzRot by as little as possible.
// Note that xyz here really means ijk, because
// the order must be provided.
//
// makeNear() adjusts "this" Euler so that its components differ
// from target by as little as possible. This method
// might not make sense for Eulers with different order
// and it probably doesn't work for repeated axis and
// relative orderings (TODO).
//
//-----------------------------------------------------------------------
static float angleMod (T angle);
static void simpleXYZRotation (Vec3<T> &xyzRot,
const Vec3<T> &targetXyzRot);
static void nearestRotation (Vec3<T> &xyzRot,
const Vec3<T> &targetXyzRot,
Order order = XYZ);
void makeNear (const Euler<T> &target);
bool frameStatic() const { return _frameStatic; }
bool initialRepeated() const { return _initialRepeated; }
bool parityEven() const { return _parityEven; }
Axis initialAxis() const { return _initialAxis; }
protected:
bool _frameStatic : 1; // relative or static rotations
bool _initialRepeated : 1; // init axis repeated as last
bool _parityEven : 1; // "parity of axis permutation"
#if defined _WIN32 || defined _WIN64
Axis _initialAxis ; // First axis of rotation
#else
Axis _initialAxis : 2; // First axis of rotation
#endif
};
//--------------------
// Convenient typedefs
//--------------------
typedef Euler<float> Eulerf;
typedef Euler<double> Eulerd;
//---------------
// Implementation
//---------------
template<class T>
inline void
Euler<T>::angleOrder(int &i, int &j, int &k) const
{
i = _initialAxis;
j = _parityEven ? (i+1)%3 : (i > 0 ? i-1 : 2);
k = _parityEven ? (i > 0 ? i-1 : 2) : (i+1)%3;
}
template<class T>
inline void
Euler<T>::angleMapping(int &i, int &j, int &k) const
{
int m[3];
m[_initialAxis] = 0;
m[(_initialAxis+1) % 3] = _parityEven ? 1 : 2;
m[(_initialAxis+2) % 3] = _parityEven ? 2 : 1;
i = m[0];
j = m[1];
k = m[2];
}
template<class T>
inline void
Euler<T>::setXYZVector(const Vec3<T> &v)
{
int i,j,k;
angleMapping(i,j,k);
(*this)[i] = v.x;
(*this)[j] = v.y;
(*this)[k] = v.z;
}
template<class T>
inline Vec3<T>
Euler<T>::toXYZVector() const
{
int i,j,k;
angleMapping(i,j,k);
return Vec3<T>((*this)[i],(*this)[j],(*this)[k]);
}
template<class T>
Euler<T>::Euler() :
Vec3<T>(0,0,0),
_frameStatic(true),
_initialRepeated(false),
_parityEven(true),
_initialAxis(X)
{}
template<class T>
Euler<T>::Euler(typename Euler<T>::Order p) :
Vec3<T>(0,0,0),
_frameStatic(true),
_initialRepeated(false),
_parityEven(true),
_initialAxis(X)
{
setOrder(p);
}
template<class T>
inline Euler<T>::Euler( const Vec3<T> &v,
typename Euler<T>::Order p,
typename Euler<T>::InputLayout l )
{
setOrder(p);
if ( l == XYZLayout ) setXYZVector(v);
else { x = v.x; y = v.y; z = v.z; }
}
template<class T>
inline Euler<T>::Euler(const Euler<T> &euler)
{
operator=(euler);
}
template<class T>
inline Euler<T>::Euler(const Euler<T> &euler,Order p)
{
setOrder(p);
Matrix33<T> M = euler.toMatrix33();
extract(M);
}
template<class T>
inline Euler<T>::Euler( T xi, T yi, T zi,
typename Euler<T>::Order p,
typename Euler<T>::InputLayout l)
{
setOrder(p);
if ( l == XYZLayout ) setXYZVector(Vec3<T>(xi,yi,zi));
else { x = xi; y = yi; z = zi; }
}
template<class T>
inline Euler<T>::Euler( const Matrix33<T> &M, typename Euler::Order p )
{
setOrder(p);
extract(M);
}
template<class T>
inline Euler<T>::Euler( const Matrix44<T> &M, typename Euler::Order p )
{
setOrder(p);
extract(M);
}
template<class T>
inline void Euler<T>::extract(const Quat<T> &q)
{
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -