⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 half.h

📁 对gif
💻 H
📖 第 1 页 / 共 2 页
字号:
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission. 
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////

// Primary authors:
//     Florian Kainz <kainz@ilm.com>
//     Rod Bogart <rgb@ilm.com>

//---------------------------------------------------------------------------
//
//	half -- a 16-bit floating point number class:
//
//	Type half can represent positive and negative numbers whose
//	magnitude is between roughly 6.1e-5 and 6.5e+4 with a relative
//	error of 9.8e-4; numbers smaller than 6.1e-5 can be represented
//	with an absolute error of 6.0e-8.  All integers from -2048 to
//	+2048 can be represented exactly.
//
//	Type half behaves (almost) like the built-in C++ floating point
//	types.  In arithmetic expressions, half, float and double can be
//	mixed freely.  Here are a few examples:
//
//	    half a (3.5);
//	    float b (a + sqrt (a));
//	    a += b;
//	    b += a;
//	    b = a + 7;
//
//	Conversions from half to float are lossless; all half numbers
//	are exactly representable as floats.
//
//	Conversions from float to half may not preserve the float's
//	value exactly.  If a float is not representable as a half, the
//	float value is rounded to the nearest representable half.  If
//	a float value is exactly in the middle between the two closest
//	representable half values, then the float value is rounded to
//	the half with the greater magnitude.
//
//	Overflows during float-to-half conversions cause arithmetic
//	exceptions.  An overflow occurs when the float value to be
//	converted is too large to be represented as a half, or if the
//	float value is an infinity or a NAN.
//
//	The implementation of type half makes the following assumptions
//	about the implementation of the built-in C++ types:
//
//	    float is an IEEE 754 single-precision number
//	    sizeof (float) == 4
//	    sizeof (unsigned int) == sizeof (float)
//	    alignof (unsigned int) == alignof (float)
//	    sizeof (unsigned short) == 2
//
//---------------------------------------------------------------------------

#ifndef _HALF_H_
#define _HALF_H_

#include <iostream>

class half
{
  public:

    //-------------
    // Constructors
    //-------------

    half ();			// no initialization
    half (float f);


    //--------------------
    // Conversion to float
    //--------------------

    operator		float () const;


    //------------
    // Unary minus
    //------------

    half		operator - () const;


    //-----------
    // Assignment
    //-----------

    half &		operator = (half  h);
    half &		operator = (float f);

    half &		operator += (half  h);
    half &		operator += (float f);

    half &		operator -= (half  h);
    half &		operator -= (float f);

    half &		operator *= (half  h);
    half &		operator *= (float f);

    half &		operator /= (half  h);
    half &		operator /= (float f);


    //---------------------------------------------------------
    // Round to n-bit precision (n should be between 0 and 10).
    // After rounding, the significand's 10-n least significant
    // bits will be zero.
    //---------------------------------------------------------

    half		round (unsigned int n) const;


    //--------------------------------------------------------------------
    // Classification:
    //
    //	h.isFinite()		returns true if h is a normalized number,
    //				a denormalized number or zero
    //
    //	h.isNormalized()	returns true if h is a normalized number
    //
    //	h.isDenormalized()	returns true if h is a denormalized number
    //
    //	h.isZero()		returns true if h is zero
    //
    //	h.isNan()		returns true if h is a NAN
    //
    //	h.isInfinity()		returns true if h is a positive
    //				or a negative infinity
    //
    //	h.isNegative()		returns true if the sign bit of h
    //				is set (negative)
    //--------------------------------------------------------------------

    bool		isFinite () const;
    bool		isNormalized () const;
    bool		isDenormalized () const;
    bool		isZero () const;
    bool		isNan () const;
    bool		isInfinity () const;
    bool		isNegative () const;


    //--------------------------------------------
    // Special values
    //
    //	posInf()	returns +infinity
    //
    //	negInf()	returns -infinity
    //
    //	qNan()		returns a NAN with the bit
    //			pattern 0111111111111111
    //
    //	sNan()		returns a NAN with the bit
    //			pattern 0111110111111111
    //--------------------------------------------

    static half		posInf ();
    static half		negInf ();
    static half		qNan ();
    static half		sNan ();


    //--------------------------------------
    // Access to the internal representation
    //--------------------------------------

    unsigned short	bits () const;
    void		setBits (unsigned short bits);


  public:

    union uif
    {
	unsigned int	i;
	float		f;
    };

  private:

    static short	convert (int i);
    static float	overflow ();

    unsigned short	_h;

    //---------------------------------------------------
    // Windows dynamic libraries don't like static
    // member variables.
    //---------------------------------------------------
#ifndef OPENEXR_DLL
    static const uif	        _toFloat[1 << 16];
    static const unsigned short _eLut[1 << 9];
#endif
};

#if defined(OPENEXR_DLL)
    //--------------------------------------
    // Lookup tables defined for Windows DLL
    //--------------------------------------
    #if defined(HALF_EXPORTS)
        extern __declspec(dllexport) half::uif		_toFloat[1 << 16];
        extern __declspec(dllexport) unsigned short	_eLut[1 << 9];
    #else
        extern __declspec(dllimport) half::uif		_toFloat[1 << 16];
        extern __declspec(dllimport) unsigned short	_eLut[1 << 9];
    #endif
#endif


//-----------
// Stream I/O
//-----------

std::ostream &		operator << (std::ostream &os, half  h);
std::istream &		operator >> (std::istream &is, half &h);


//----------
// Debugging
//----------

void			printBits   (std::ostream &os, half  h);
void			printBits   (std::ostream &os, float f);
void			printBits   (char  c[19], half  h);
void			printBits   (char  c[35], float f);


//-------------------------------------------------------------------------
// Limits
//
// Visual C++ will complain if HALF_MIN, HALF_NRM_MIN etc. are not float
// constants, but at least one other compiler (gcc 2.96) produces incorrect
// results if they are.
//-------------------------------------------------------------------------

#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER

  #define HALF_MIN	5.96046448e-08f	// Smallest positive half

  #define HALF_NRM_MIN	6.10351562e-05f	// Smallest positive normalized half

  #define HALF_MAX	65504.0f	// Largest positive half

  #define HALF_EPSILON	0.00097656f	// Smallest positive e for which
					// half (1.0 + e) != half (1.0)
#else

  #define HALF_MIN	5.96046448e-08	// Smallest positive half

  #define HALF_NRM_MIN	6.10351562e-05	// Smallest positive normalized half

  #define HALF_MAX	65504.0		// Largest positive half

  #define HALF_EPSILON	0.00097656	// Smallest positive e for which
					// half (1.0 + e) != half (1.0)
#endif


#define HALF_MANT_DIG	11		// Number of digits in mantissa
					// (significand + hidden leading 1)

#define HALF_DIG	2		// Number of base 10 digits that
					// can be represented without change

#define HALF_RADIX	2		// Base of the exponent

#define HALF_MIN_EXP	-13		// Minimum negative integer such that
					// HALF_RADIX raised to the power of
					// one less than that integer is a
					// normalized half

#define HALF_MAX_EXP	16		// Maximum positive integer such that
					// HALF_RADIX raised to the power of
					// one less than that integer is a
					// normalized half

#define HALF_MIN_10_EXP	-4		// Minimum positive integer such
					// that 10 raised to that power is
					// a normalized half

#define HALF_MAX_10_EXP	4		// Maximum positive integer such
					// that 10 raised to that power is
					// a normalized half


//---------------------------------------------------------------------------
//
// Implementation --
//
// Representation of a float:
//
//	We assume that a float, f, is an IEEE 754 single-precision
//	floating point number, whose bits are arranged as follows:
//
//	    31 (msb)
//	    | 
//	    | 30     23
//	    | |      | 
//	    | |      | 22                    0 (lsb)
//	    | |      | |                     |
//	    X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
//
//	    s e        m
//
//	S is the sign-bit, e is the exponent and m is the significand.
//
//	If e is between 1 and 254, f is a normalized number:
//
//	            s    e-127
//	    f = (-1)  * 2      * 1.m
//
//	If e is 0, and m is not zero, f is a denormalized number:
//
//	            s    -126
//	    f = (-1)  * 2      * 0.m
//
//	If e and m are both zero, f is zero:
//
//	    f = 0.0
//
//	If e is 255, f is an "infinity" or "not a number" (NAN),
//	depending on whether m is zero or not.
//
//	Examples:
//
//	    0 00000000 00000000000000000000000 = 0.0
//	    0 01111110 00000000000000000000000 = 0.5
//	    0 01111111 00000000000000000000000 = 1.0
//	    0 10000000 00000000000000000000000 = 2.0
//	    0 10000000 10000000000000000000000 = 3.0
//	    1 10000101 11110000010000000000000 = -124.0625
//	    0 11111111 00000000000000000000000 = +infinity
//	    1 11111111 00000000000000000000000 = -infinity
//	    0 11111111 10000000000000000000000 = NAN
//	    1 11111111 11111111111111111111111 = NAN
//
// Representation of a half:
//
//	Here is the bit-layout for a half number, h:
//
//	    15 (msb)
//	    | 
//	    | 14  10
//	    | |   |
//	    | |   | 9        0 (lsb)
//	    | |   | |        |
//	    X XXXXX XXXXXXXXXX
//
//	    s e     m
//
//	S is the sign-bit, e is the exponent and m is the significand.
//
//	If e is between 1 and 30, h is a normalized number:
//
//	            s    e-15
//	    h = (-1)  * 2     * 1.m
//

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -