📄 selectorderpatterns.m
字号:
echo on
global trainTestData2
global StageOneIris
global traindata
global trainlabel
load trainTestData2
load StageOneIris
traindata=traindata;
trainlabel=trainlabel;
sz=size(traindata,1);
xFns = 'partmapXover orderbasedXover '
xFns =[xFns,'singleptXover linerorderXover'];
% xFns = [xFns,'enhancederXover linerorderXover']
% xFns = [xFns,'linerorderXover singleptXover']
xOpts = [2;2;2;2];%[ 2; 2; 2; 2; 2; 2; 2];
% Order-based Mutation Operators
% inversionMutation
% adjswapMutation.m
% shiftMutation.m
% swapMutation.m
% threeswapMutation.m
mFns = 'inversionMutation adjswapMutation shiftMutation swapMutation threeswapMutation';
mOpts = [2;2;2;2;2];
% Termination Operators
termFns = 'maxGenTerm';
termOps = [100]; % 100 Generations
% Selection Function
selectFn = 'normGeomSelect';
selectOps = [0.08];
% Evaluation Function
evalFn = 'sfam_demoEval';
evalOps = [];
type sfam_demoEval
%the upper and lower bounds on the variables
bounds = [sz];
% GA Options [epsilon float/binar display]
gaOpts=[1e-6 1 1];
% Generate an intialize population of size 20
startPop = initializeoga(20,bounds,'sfam_demoEval',[1e-6 1]);
%Hit a return to continue
pause
[x endPop bestPop trace]=ga(bounds,evalFn,evalOps,startPop,gaOpts,termFns,termOps,selectFn,selectOps,xFns,xOpts,mFns,mOpts);
% x is the best solution found
x
%Hit a return to continue
pause
% endPop is the ending population
%endPop
%%Hit a return to continue
%pause
% bestPop is the best solution tracked over generations
bestPop
%Hit a return to continue
pause
% trace is a trace of the best value and average value of generations
trace
%Hit a return to continue
pause
% Plot the best over time
clf
plot(trace(:,1),trace(:,2),'r');
hold on
plot(trace(:,1),trace(:,3));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -