📄 nparzen_dd.m
字号:
%NPARZEN_DD Naive Parzen data description.% % W = nparzen_dd(A,fracrej)% % Fit a Parzen density on each individual feature in dataset A and% multiply the results for the final density estimate. This is similar% to the Naive Bayes approach used for classification.% The threshold is put such that fracrej of the target objects is% rejected.% % W = parzen_dd(A,fracrej,h)% % If the width parameter is known, it can be given as third parameter,% otherwise it is optimized using parzenml.% % See also parzen_dd, dd_roc% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands function W = nparzen_dd(a,fracrej,h)if nargin < 3, h = []; endif nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(a) W = mapping(mfilename,{fracrej,h}); W = setname(W,'NaiveParzen'); returnendif ~ismapping(fracrej) %training % Make sure a is an OC dataset: a = target_class(a); k = size(a,2); % Train it: if (nargin<3) | (isempty(h)) for i=1:k h(i) = parzenml(+a(:,i)); %DXD BAD patch!! % When the dataset contains identical objects, or when it % contains discrete features, the optimization of h using LOO % will fail. h -> NaN. If that is the case, I patch it and % replace h(i) by a small value % Actually, in the future I should implement that the features % are discrete (so, define it in the dataset) and use a % discrete probability density here. if ~isfinite(h(i)) h(i) = 1e-12; end end end % check if h is not the correct size: if length(h)~=k error('NParzen_dd expects k smoothing parameters'); end % Get the mappings: w = {}; for i=1:k w{i} = mapping('parzen_map','trained',{a(:,i), h(i)}, 'target',1,1); end % Map the training data and obtain the threshold: d = zeros(size(a)); for i=1:k d(:,i) = +(a(:,i)*w{i}); end s = warning('off'); % these annoying 0 densities... p = sum(log(d),2); warning(s); thr = dd_threshold(p,fracrej); %and save all useful data: W.w = w; W.h = h; W.threshold = thr; W = mapping(mfilename,'trained',W,str2mat('target','outlier'),k,2); W = setname(W,'NaiveParzen');else %testing W = getdata(fracrej); % unpack [m,k] = size(a); %compute: d = zeros(size(a)); for i=1:k d(:,i) = +(a(:,i)*W.w{i}); end s = warning('off'); % these annoying 0 densities... out = sum(log(d),2); warning(s); newout = [out, repmat(W.threshold,m,1)]; % Store the density: W = setdat(a,newout,fracrej); W = setfeatdom(W,{[0 inf] [0 inf]});endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -