📄 lvq3.m
字号:
function [features, targets] = LVQ3(train_features, train_targets, Nmu, region, plot_on)
%Reduce the number of data points using linear vector quantization
%Inputs:
% train_features - Input features
% train_targets - Input targets
% Nmu - Number of output data points
% region - Decision region vector: [-x x -y y number_of_points]
% plot_on - Plot stages of the algorithm
%
%Outputs
% features - New features
% targets - New targets
%OR
% D - Decision region
if (nargin < 5),
plot_on = 0;
end
if ((sum(train_targets) == length(train_targets)) | (sum(~train_targets) == length(train_targets))),
error('LVQ3 works only if there are features from both classes.')
end
L = length(train_targets);
alpha = 10/L;
[D,r] = size(train_features);
dist = zeros(Nmu,L);
label = zeros(1,L);
window = 0.25;
epsilon= 0.25;
%Initialize the mu's
mu = randn(D,Nmu);
mu = sqrtm(cov(train_features',1))*mu + mean(train_features')'*ones(1,Nmu);
mu_target= [zeros(1,floor(Nmu/2)) ones(1,Nmu-floor(Nmu/2))];
old_mu = zeros(D,Nmu);
iterations = 0;
while ((sum(sum(abs(mu - old_mu))) > 0.01) & (iterations < 1e4)),
iterations = iterations + 1;
old_mu = mu;
%Classify all the features to one of the mu's
for i = 1:Nmu,
dist(i,:) = sum((train_features - mu(:,i)*ones(1,L)).^2);
end
%Label the points
[dist,label] = sort(dist);
closest = dist(1:2,:);
%Compute windows
in_window = (min(closest(1,:)./closest(2,:), closest(2,:)./closest(1,:)) > (1-window)/(1+window));
indices = find(in_window);
%Move the mu's
for i = 1:length(indices),
x = indices(i);
mu1 = label(1,x);
mu2 = label(2,x);
if ((train_targets(x) == mu_target(mu1)) & (train_targets(x) == mu_target(mu2))),
mu(:,mu1) = mu(:,mu1) + epsilon * alpha * (train_features(:,x) - mu(:,mu1));
mu(:,mu2) = mu(:,mu2) + epsilon * alpha * (train_features(:,x) - mu(:,mu2));
else
if (train_targets(x) == mu_target(mu1)),
mu(:,mu1) = mu(:,mu1) + alpha * (train_features(:,x) - mu(:,mu1));
mu(:,mu2) = mu(:,mu2) - alpha * (train_features(:,x) - mu(:,mu2));
else
mu(:,mu1) = mu(:,mu1) - alpha * (train_features(:,x) - mu(:,mu1));
mu(:,mu2) = mu(:,mu2) + alpha * (train_features(:,x) - mu(:,mu2));
end
end
end
alpha = 0.95 * alpha;
if (plot_on == 1),
plot_process(mu)
end
end
%Make the decision region
targets = mu_target;
features = mu;
if (nargout == 1),
features = Nearest_Neighbor(features, targets, 1, region);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -