📄 pnn.m
字号:
function D = PNN(train_features, train_targets, sigma, region)
% Classify using a probabilistic neural network
% Inputs:
% features- Train features
% targets - Train targets
% sigma - Gaussian width
% region - Decision region vector: [-x x -y y number_of_points]
%
% Outputs
% D - Decision sufrace
[Dim, Nf] = size(train_features);
Dim = Dim + 1;
train_features(Dim,:) = ones(1,Nf);
%Build the classifier
x = train_features;
W = x ./ (ones(Dim,1)*sqrt(sum(x.^2))); %x_jk <- x_jk / sqrt(sum(x_ji^2)), w_jk <- x_jk
%if x in w_i then a_ji <- 1
a(:,1) = train_targets';
a(:,2) = ~train_targets';
%Test it and build the decision region
%For decision region
N = region(5);
mx = ones(N,1) * linspace (region(1),region(2),N);
my = linspace (region(3),region(4),N)' * ones(1,N);
flatxy = [mx(:), my(:), ones(N^2,1)]';
flatxy = flatxy ./ (ones(Dim,1)*sqrt(sum(flatxy.^2)));
%net_k <- W'_t*x
net = W' * flatxy;
%if a_ki=1 then g_i <- g_i + exp((net-1)/sigma^2)
u_targets = unique(train_targets);
arguments = zeros(length(u_targets),size(flatxy,2));
for i = 1:length(u_targets),
mask = a(:,i) * ones(1,size(flatxy,2));
arguments(i,:) = sum(exp((net-1)/sigma^2) .* mask);
end
%class <- argmax g(x)
[m, indices] = max(arguments);
targets = zeros(1,size(flatxy,2));
for i = 1:length(u_targets),
targets(find(indices == i)) = u_targets(i);
end
D = reshape(targets,N,N);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -