⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bernoulli.cal

📁 Calc Software Package for Number Calc
💻 CAL
字号:
/* * bernoulli - clculate the Nth Bernoulli number B(n) * * Copyright (C) 2000  David I. Bell and Landon Curt Noll * * Calc is open software; you can redistribute it and/or modify it under * the terms of the version 2.1 of the GNU Lesser General Public License * as published by the Free Software Foundation. * * Calc is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU Lesser General * Public License for more details. * * A copy of version 2.1 of the GNU Lesser General Public License is * distributed with calc under the filename COPYING-LGPL.  You should have * received a copy with calc; if not, write to Free Software Foundation, Inc. * 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA. * * @(#) $Revision: 29.3 $ * @(#) $Id: bernoulli.cal,v 29.3 2000/12/17 12:26:04 chongo Exp $ * @(#) $Source: /usr/local/src/cmd/calc/cal/RCS/bernoulli.cal,v $ * * Under source code control:	1991/09/30 11:18:41 * File existed as early as:	1991 * * Share and enjoy!  :-)	http://www.isthe.com/chongo/tech/comp/calc/ *//* * Calculate the Nth Bernoulli number B(n). * * NOTE: This is now a bulitin function. * * The non-buildin code used the following symbolic formula to calculate B(n): * *	(b+1)^(n+1) - b^(n+1) = 0 * * where b is a dummy value, and each power b^i gets replaced by B(i). * For example, for n = 3: * *	(b+1)^4 - b^4 = 0 *	b^4 + 4*b^3 + 6*b^2 + 4*b + 1 - b^4 = 0 *	4*b^3 + 6*b^2 + 4*b + 1 = 0 *	4*B(3) + 6*B(2) + 4*B(1) + 1 = 0 *	B(3) = -(6*B(2) + 4*B(1) + 1) / 4 * * The combinatorial factors in the expansion of the above formula are * calculated interatively, and we use the fact that B(2i+1) = 0 if i > 0. * Since all previous B(n)'s are needed to calculate a particular B(n), all * values obtained are saved in an array for ease in repeated calculations. *//*static Bnmax;static mat Bn[1001];*/define B(n){/*	local	nn, np1, i, sum, mulval, divval, combval;	if (!isint(n) || (n < 0))		quit "Non-negative integer required for Bernoulli";	if (n == 0)		return 1;	if (n == 1)		return -1/2;	if (isodd(n))		return 0;	if (n > 1000)		quit "Very large Bernoulli";	if (n <= Bnmax)		return Bn[n];	for (nn = Bnmax + 2; nn <= n; nn+=2) {		np1 = nn + 1;		mulval = np1;		divval = 1;		combval = 1;		sum = 1 - np1 / 2;		for (i = 2; i < np1; i+=2) {			combval = combval * mulval-- / divval++;			combval = combval * mulval-- / divval++;			sum += combval * Bn[i];		}		Bn[nn] = -sum / np1;	}	Bnmax = n;	return Bn[n];*/	return bernoulli(n);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -