📄 commath.c
字号:
/* * commath - extended precision complex arithmetic primitive routines * * Copyright (C) 1999 David I. Bell * * Calc is open software; you can redistribute it and/or modify it under * the terms of the version 2.1 of the GNU Lesser General Public License * as published by the Free Software Foundation. * * Calc is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General * Public License for more details. * * A copy of version 2.1 of the GNU Lesser General Public License is * distributed with calc under the filename COPYING-LGPL. You should have * received a copy with calc; if not, write to Free Software Foundation, Inc. * 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. * * @(#) $Revision: 29.4 $ * @(#) $Id: commath.c,v 29.4 2005/10/18 10:43:49 chongo Exp $ * @(#) $Source: /usr/local/src/cmd/calc/RCS/commath.c,v $ * * Under source code control: 1990/02/15 01:48:10 * File existed as early as: before 1990 * * Share and enjoy! :-) http://www.isthe.com/chongo/tech/comp/calc/ */#include "cmath.h"COMPLEX _czero_ = { &_qzero_, &_qzero_, 1 };COMPLEX _cone_ = { &_qone_, &_qzero_, 1 };COMPLEX _conei_ = { &_qzero_, &_qone_, 1 };static COMPLEX _cnegone_ = { &_qnegone_, &_qzero_, 1 };/* * Add two complex numbers. */COMPLEX *c_add(COMPLEX *c1, COMPLEX *c2){ COMPLEX *r; if (ciszero(c1)) return clink(c2); if (ciszero(c2)) return clink(c1); r = comalloc(); if (!qiszero(c1->real) || !qiszero(c2->real)) { qfree(r->real); r->real = qqadd(c1->real, c2->real); } if (!qiszero(c1->imag) || !qiszero(c2->imag)) { qfree(r->imag); r->imag = qqadd(c1->imag, c2->imag); } return r;}/* * Subtract two complex numbers. */COMPLEX *c_sub(COMPLEX *c1, COMPLEX *c2){ COMPLEX *r; if ((c1->real == c2->real) && (c1->imag == c2->imag)) return clink(&_czero_); if (ciszero(c2)) return clink(c1); r = comalloc(); if (!qiszero(c1->real) || !qiszero(c2->real)) { qfree(r->real); r->real = qsub(c1->real, c2->real); } if (!qiszero(c1->imag) || !qiszero(c2->imag)) { qfree(r->imag); r->imag = qsub(c1->imag, c2->imag); } return r;}/* * Multiply two complex numbers. * This saves one multiplication over the obvious algorithm by * trading it for several extra additions, as follows. Let * q1 = (a + b) * (c + d) * q2 = a * c * q3 = b * d * Then (a+bi) * (c+di) = (q2 - q3) + (q1 - q2 - q3)i. */COMPLEX *c_mul(COMPLEX *c1, COMPLEX *c2){ COMPLEX *r; NUMBER *q1, *q2, *q3, *q4; if (ciszero(c1) || ciszero(c2)) return clink(&_czero_); if (cisone(c1)) return clink(c2); if (cisone(c2)) return clink(c1); if (cisreal(c2)) return c_mulq(c1, c2->real); if (cisreal(c1)) return c_mulq(c2, c1->real); /* * Need to do the full calculation. */ r = comalloc(); q2 = qqadd(c1->real, c1->imag); q3 = qqadd(c2->real, c2->imag); q1 = qmul(q2, q3); qfree(q2); qfree(q3); q2 = qmul(c1->real, c2->real); q3 = qmul(c1->imag, c2->imag); q4 = qqadd(q2, q3); qfree(r->real); r->real = qsub(q2, q3); qfree(r->imag); r->imag = qsub(q1, q4); qfree(q1); qfree(q2); qfree(q3); qfree(q4); return r;}/* * Square a complex number. */COMPLEX *c_square(COMPLEX *c){ COMPLEX *r; NUMBER *q1, *q2; if (ciszero(c)) return clink(&_czero_); if (cisrunit(c)) return clink(&_cone_); if (cisiunit(c)) return clink(&_cnegone_); r = comalloc(); if (cisreal(c)) { qfree(r->real); r->real = qsquare(c->real); return r; } if (cisimag(c)) { qfree(r->real); q1 = qsquare(c->imag); r->real = qneg(q1); qfree(q1); return r; } q1 = qsquare(c->real); q2 = qsquare(c->imag); qfree(r->real); r->real = qsub(q1, q2); qfree(q1); qfree(q2); qfree(r->imag); q1 = qmul(c->real, c->imag); r->imag = qscale(q1, 1L); qfree(q1); return r;}/* * Divide two complex numbers. */COMPLEX *c_div(COMPLEX *c1, COMPLEX *c2){ COMPLEX *r; NUMBER *q1, *q2, *q3, *den; if (ciszero(c2)) { math_error("Division by zero"); /*NOTREACHED*/ } if ((c1->real == c2->real) && (c1->imag == c2->imag)) return clink(&_cone_); r = comalloc(); if (cisreal(c1) && cisreal(c2)) { qfree(r->real); r->real = qqdiv(c1->real, c2->real); return r; } if (cisimag(c1) && cisimag(c2)) { qfree(r->real); r->real = qqdiv(c1->imag, c2->imag); return r; } if (cisimag(c1) && cisreal(c2)) { qfree(r->imag); r->imag = qqdiv(c1->imag, c2->real); return r; } if (cisreal(c1) && cisimag(c2)) { qfree(r->imag); q1 = qqdiv(c1->real, c2->imag); r->imag = qneg(q1); qfree(q1); return r; } if (cisreal(c2)) { qfree(r->real); qfree(r->imag); r->real = qqdiv(c1->real, c2->real); r->imag = qqdiv(c1->imag, c2->real); return r; } q1 = qsquare(c2->real); q2 = qsquare(c2->imag); den = qqadd(q1, q2); qfree(q1); qfree(q2); q1 = qmul(c1->real, c2->real); q2 = qmul(c1->imag, c2->imag); q3 = qqadd(q1, q2); qfree(q1); qfree(q2); qfree(r->real); r->real = qqdiv(q3, den); qfree(q3); q1 = qmul(c1->real, c2->imag); q2 = qmul(c1->imag, c2->real); q3 = qsub(q2, q1); qfree(q1); qfree(q2); qfree(r->imag); r->imag = qqdiv(q3, den); qfree(q3); qfree(den); return r;}/* * Invert a complex number. */COMPLEX *c_inv(COMPLEX *c){ COMPLEX *r; NUMBER *q1, *q2, *den; if (ciszero(c)) { math_error("Inverting zero"); /*NOTREACHED*/ } r = comalloc(); if (cisreal(c)) { qfree(r->real); r->real = qinv(c->real); return r; } if (cisimag(c)) { q1 = qinv(c->imag); qfree(r->imag); r->imag = qneg(q1); qfree(q1); return r; } q1 = qsquare(c->real); q2 = qsquare(c->imag); den = qqadd(q1, q2); qfree(q1); qfree(q2); qfree(r->real); r->real = qqdiv(c->real, den); q1 = qqdiv(c->imag, den); qfree(r->imag); r->imag = qneg(q1); qfree(q1); qfree(den); return r;}/* * Negate a complex number. */COMPLEX *c_neg(COMPLEX *c){ COMPLEX *r; if (ciszero(c)) return clink(&_czero_); r = comalloc(); if (!qiszero(c->real)) { qfree(r->real); r->real = qneg(c->real); } if (!qiszero(c->imag)) { qfree(r->imag); r->imag = qneg(c->imag); } return r;}/* * Take the integer part of a complex number. * This means take the integer part of both components. */COMPLEX *c_int(COMPLEX *c){ COMPLEX *r; if (cisint(c)) return clink(c); r = comalloc(); qfree(r->real); r->real = qint(c->real); qfree(r->imag); r->imag = qint(c->imag); return r;}/* * Take the fractional part of a complex number. * This means take the fractional part of both components. */COMPLEX *c_frac(COMPLEX *c){ COMPLEX *r; if (cisint(c)) return clink(&_czero_); r = comalloc(); qfree(r->real); r->real = qfrac(c->real); qfree(r->imag); r->imag = qfrac(c->imag); return r;}/* * Take the conjugate of a complex number. * This negates the complex part. */COMPLEX *c_conj(COMPLEX *c){ COMPLEX *r; if (cisreal(c)) return clink(c); r = comalloc(); if (!qiszero(c->real)) { qfree(r->real); r->real = qlink(c->real); } qfree(r->imag); r->imag = qneg(c->imag); return r;}/* * Return the real part of a complex number. */COMPLEX *c_real(COMPLEX *c){ COMPLEX *r; if (cisreal(c)) return clink(c); r = comalloc(); if (!qiszero(c->real)) { qfree(r->real); r->real = qlink(c->real); } return r;}/* * Return the imaginary part of a complex number as a real. */COMPLEX *c_imag(COMPLEX *c){ COMPLEX *r; if (cisreal(c)) return clink(&_czero_); r = comalloc(); qfree(r->real); r->real = qlink(c->imag); return r;}/* * Add a real number to a complex number. */COMPLEX *c_addq(COMPLEX *c, NUMBER *q){ COMPLEX *r; if (qiszero(q)) return clink(c); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qqadd(c->real, q); r->imag = qlink(c->imag); return r;}/* * Subtract a real number from a complex number. */COMPLEX *c_subq(COMPLEX *c, NUMBER *q){ COMPLEX *r; if (qiszero(q)) return clink(c); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qsub(c->real, q); r->imag = qlink(c->imag); return r;}/* * Shift the components of a complex number left by the specified * number of bits. Negative values shift to the right. */COMPLEX *c_shift(COMPLEX *c, long n){ COMPLEX *r; if (ciszero(c) || (n == 0)) return clink(c); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qshift(c->real, n); r->imag = qshift(c->imag, n); return r;}/* * Scale a complex number by a power of two. */COMPLEX *c_scale(COMPLEX *c, long n){ COMPLEX *r; if (ciszero(c) || (n == 0)) return clink(c); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qscale(c->real, n); r->imag = qscale(c->imag, n); return r;}/* * Multiply a complex number by a real number. */COMPLEX *c_mulq(COMPLEX *c, NUMBER *q){ COMPLEX *r; if (qiszero(q)) return clink(&_czero_); if (qisone(q)) return clink(c); if (qisnegone(q)) return c_neg(c); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qmul(c->real, q); r->imag = qmul(c->imag, q); return r;}/* * Divide a complex number by a real number. */COMPLEX *c_divq(COMPLEX *c, NUMBER *q){ COMPLEX *r; if (qiszero(q)) { math_error("Division by zero"); /*NOTREACHED*/ } if (qisone(q)) return clink(c); if (qisnegone(q)) return c_neg(c); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qqdiv(c->real, q); r->imag = qqdiv(c->imag, q); return r;}/* * Construct a complex number given the real and imaginary components. */COMPLEX *qqtoc(NUMBER *q1, NUMBER *q2){ COMPLEX *r; if (qiszero(q1) && qiszero(q2)) return clink(&_czero_); r = comalloc(); qfree(r->real); qfree(r->imag); r->real = qlink(q1); r->imag = qlink(q2); return r;}/* * Compare two complex numbers for equality, returning FALSE if they are equal, * and TRUE if they differ. */BOOLc_cmp(COMPLEX *c1, COMPLEX *c2){ BOOL i; i = qcmp(c1->real, c2->real); if (!i) i = qcmp(c1->imag, c2->imag); return i;}/* * Compare two complex numbers and return a complex number with real and * imaginary parts -1, 0 or 1 indicating relative values of the real and * imaginary parts of the two numbers. */COMPLEX *c_rel(COMPLEX *c1, COMPLEX *c2){ COMPLEX *c; c = comalloc(); qfree(c->real); qfree(c->imag); c->real = itoq((long) qrel(c1->real, c2->real)); c->imag = itoq((long) qrel(c1->imag, c2->imag)); return c;}/* * Allocate a new complex number. */COMPLEX *comalloc(void){ COMPLEX *r; r = (COMPLEX *) malloc(sizeof(COMPLEX)); if (r == NULL) { math_error("Cannot allocate complex number"); /*NOTREACHED*/ } r->links = 1; r->real = qlink(&_qzero_); r->imag = qlink(&_qzero_); return r;}/* * Free a complex number. */voidcomfree(COMPLEX *c){ if (--(c->links) > 0) return; qfree(c->real); qfree(c->imag); free(c);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -