⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 shs.c

📁 Calc Software Package for Number Calc
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * shs - old Secure Hash Standard * ************************************************************************** * This version implements the old Secure Hash Algorithm specified by	  * * (FIPS Pub 180).  This version is kept for backward compatibility with  * * shs version 2.10.1.	See the shs utility for the new standard.	  * ************************************************************************** * * Written 2 September 1992, Peter C. Gutmann. * * This file was Modified/Re-written by: * *	Landon Curt Noll *	http://www.isthe.com/chongo/ * *	chongo <was here> /\../\ * * This code has been placed in the public domain.  Please do not * copyright this code. * * LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH  REGARD  TO * THIS	 SOFTWARE,  INCLUDING  ALL IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS.  IN NO EVENT SHALL	 LANDON	 CURT * NOLL	 BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM  LOSS  OF * USE,	 DATA  OR  PROFITS, WHETHER IN AN ACTION OF CONTRACT, * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR  IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * Based on Version 2.11 (09 Mar 1995) from Landon Curt Noll's * (http://www.isthe.com/chongo/) shs hash program. * * @(#) $Revision: 29.3 $ * @(#) $Id: shs.c,v 29.3 2004/02/23 08:14:15 chongo Exp $ * @(#) $Source: /usr/local/src/cmd/calc/RCS/shs.c,v $ * * This file is not covered under version 2.1 of the GNU LGPL. * **** * * The SHS algorithm hashes 32 bit unsigned values, 16 at a time. * It further specifies that strings are to be converted into * 32 bit values in BIG ENDIAN order.  That is on little endian * machines, strings are byte swapped into BIG ENDIAN order before * they are taken 32 bit at a time.  Even so, when hashing 32 bit * numeric values the byte order DOES NOT MATTER because the * algorithm works off of their numeric value, not their byte order. * * In calc, we want to hash equal values to the same hash value. * For the most part, we will be hashing arrays of HALF's instead * of strings.	For this reason, the functions below do not byte * swap on little endian machines automatically.  Instead it is * the responsibility of the caller of the internal SHS function * to ensure that the values are already in the canonical 32 bit * numeric value form. */#include <stdio.h>#include "longbits.h"#include "align32.h"#include "endian_calc.h"#include "value.h"#include "hash.h"#include "shs.h"/* * The SHS f()-functions.  The f1 and f3 functions can be optimized * to save one boolean operation each - thanks to Rich Schroeppel, * rcs@cs.arizona.edu for discovering this. * * f1: ((x&y) | (~x&z)) == (z ^ (x&(y^z))) * f3: ((x&y) | (x&z) | (y&z)) == ((x&y) | (z&(x|y))) */#define f1(x,y,z)	(z ^ (x&(y^z)))		/* Rounds  0-19 */#define f2(x,y,z)	(x^y^z)			/* Rounds 20-39 */#define f3(x,y,z)	((x&y) | (z&(x|y)))	/* Rounds 40-59 */#define f4(x,y,z)	(x^y^z)			/* Rounds 60-79 *//* The SHS Mysterious Constants */#define K1	0x5A827999L	/* Rounds  0-19 */#define K2	0x6ED9EBA1L	/* Rounds 20-39 */#define K3	0x8F1BBCDCL	/* Rounds 40-59 */#define K4	0xCA62C1D6L	/* Rounds 60-79 *//* SHS initial values */#define h0init	0x67452301L#define h1init	0xEFCDAB89L#define h2init	0x98BADCFEL#define h3init	0x10325476L#define h4init	0xC3D2E1F0L/* 32-bit rotate left - kludged with shifts */#define LEFT_ROT(X,n)  (((X)<<(n)) | ((X)>>(32-(n))))/* * The initial expanding function.  The hash function is defined over an * 80-word expanded input array W, where the first 16 are copies of the input * data, and the remaining 64 are defined by * *	W[i] = W[i-16] ^ W[i-14] ^ W[i-8] ^ W[i-3] * * This implementation generates these values on the fly in a circular * buffer - thanks to Colin Plumb (colin@nyx10.cs.du.edu) for this * optimization. */#define exor(W,i) (W[i&15] ^= (W[(i-14)&15] ^ W[(i-8)&15] ^ W[(i-3)&15]))/* * The prototype SHS sub-round.	 The fundamental sub-round is: * *	a' = e + LEFT_ROT(a,5) + f(b,c,d) + k + data; *	b' = a; *	c' = LEFT_ROT(b,30); *	d' = c; *	e' = d; * * but this is implemented by unrolling the loop 5 times and renaming the * variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration. * This code is then replicated 20 times for each of the 4 functions, using * the next 20 values from the W[] array each time. */#define subRound(a, b, c, d, e, f, k, data) \    (e += LEFT_ROT(a,5) + f(b,c,d) + k + data, b = LEFT_ROT(b,30))/* * forward declarations */static void shsInit(HASH*);static void shsTransform(USB32*, USB32*);static void shsUpdate(HASH*, USB8*, USB32);static void shsFinal(HASH*);static void shs_chkpt(HASH*);static void shs_note(int, HASH*);static void shs_type(int, HASH*);void shs_init_state(HASH*);static ZVALUE shs_final_state(HASH*);static int shs_cmp(HASH*, HASH*);static void shs_print(HASH*);/* * shsInit - initialize the SHS state */static voidshsInit(HASH *state){	SHS_INFO *dig = &state->h_union.h_shs;	/* digest state */	/* Set the h-vars to their initial values */	dig->digest[0] = h0init;	dig->digest[1] = h1init;	dig->digest[2] = h2init;	dig->digest[3] = h3init;	dig->digest[4] = h4init;	/* Initialise bit count */	dig->countLo = 0;	dig->countHi = 0;	dig->datalen = 0;}/* * shsTransform - perform the SHS transformatio * * Note that this code, like MD5, seems to break some optimizing compilers. * It may be necessary to split it into sections, eg based on the four * subrounds.  One may also want to roll each subround into a loop. */static voidshsTransform(USB32 *digest, USB32 *W){	USB32 A, B, C, D, E;	/* Local vars */	/* Set up first buffer and local data buffer */	A = digest[0];	B = digest[1];	C = digest[2];	D = digest[3];	E = digest[4];	/* Heavy mangling, in 4 sub-rounds of 20 interations each. */	subRound(A, B, C, D, E, f1, K1, W[ 0]);	subRound(E, A, B, C, D, f1, K1, W[ 1]);	subRound(D, E, A, B, C, f1, K1, W[ 2]);	subRound(C, D, E, A, B, f1, K1, W[ 3]);	subRound(B, C, D, E, A, f1, K1, W[ 4]);	subRound(A, B, C, D, E, f1, K1, W[ 5]);	subRound(E, A, B, C, D, f1, K1, W[ 6]);	subRound(D, E, A, B, C, f1, K1, W[ 7]);	subRound(C, D, E, A, B, f1, K1, W[ 8]);	subRound(B, C, D, E, A, f1, K1, W[ 9]);	subRound(A, B, C, D, E, f1, K1, W[10]);	subRound(E, A, B, C, D, f1, K1, W[11]);	subRound(D, E, A, B, C, f1, K1, W[12]);	subRound(C, D, E, A, B, f1, K1, W[13]);	subRound(B, C, D, E, A, f1, K1, W[14]);	subRound(A, B, C, D, E, f1, K1, W[15]);	subRound(E, A, B, C, D, f1, K1, exor(W,16));	subRound(D, E, A, B, C, f1, K1, exor(W,17));	subRound(C, D, E, A, B, f1, K1, exor(W,18));	subRound(B, C, D, E, A, f1, K1, exor(W,19));	subRound(A, B, C, D, E, f2, K2, exor(W,20));	subRound(E, A, B, C, D, f2, K2, exor(W,21));	subRound(D, E, A, B, C, f2, K2, exor(W,22));	subRound(C, D, E, A, B, f2, K2, exor(W,23));	subRound(B, C, D, E, A, f2, K2, exor(W,24));	subRound(A, B, C, D, E, f2, K2, exor(W,25));	subRound(E, A, B, C, D, f2, K2, exor(W,26));	subRound(D, E, A, B, C, f2, K2, exor(W,27));	subRound(C, D, E, A, B, f2, K2, exor(W,28));	subRound(B, C, D, E, A, f2, K2, exor(W,29));	subRound(A, B, C, D, E, f2, K2, exor(W,30));	subRound(E, A, B, C, D, f2, K2, exor(W,31));	subRound(D, E, A, B, C, f2, K2, exor(W,32));	subRound(C, D, E, A, B, f2, K2, exor(W,33));	subRound(B, C, D, E, A, f2, K2, exor(W,34));	subRound(A, B, C, D, E, f2, K2, exor(W,35));	subRound(E, A, B, C, D, f2, K2, exor(W,36));	subRound(D, E, A, B, C, f2, K2, exor(W,37));	subRound(C, D, E, A, B, f2, K2, exor(W,38));	subRound(B, C, D, E, A, f2, K2, exor(W,39));	subRound(A, B, C, D, E, f3, K3, exor(W,40));	subRound(E, A, B, C, D, f3, K3, exor(W,41));	subRound(D, E, A, B, C, f3, K3, exor(W,42));	subRound(C, D, E, A, B, f3, K3, exor(W,43));	subRound(B, C, D, E, A, f3, K3, exor(W,44));	subRound(A, B, C, D, E, f3, K3, exor(W,45));	subRound(E, A, B, C, D, f3, K3, exor(W,46));	subRound(D, E, A, B, C, f3, K3, exor(W,47));	subRound(C, D, E, A, B, f3, K3, exor(W,48));	subRound(B, C, D, E, A, f3, K3, exor(W,49));	subRound(A, B, C, D, E, f3, K3, exor(W,50));	subRound(E, A, B, C, D, f3, K3, exor(W,51));	subRound(D, E, A, B, C, f3, K3, exor(W,52));	subRound(C, D, E, A, B, f3, K3, exor(W,53));	subRound(B, C, D, E, A, f3, K3, exor(W,54));	subRound(A, B, C, D, E, f3, K3, exor(W,55));	subRound(E, A, B, C, D, f3, K3, exor(W,56));	subRound(D, E, A, B, C, f3, K3, exor(W,57));	subRound(C, D, E, A, B, f3, K3, exor(W,58));	subRound(B, C, D, E, A, f3, K3, exor(W,59));	subRound(A, B, C, D, E, f4, K4, exor(W,60));	subRound(E, A, B, C, D, f4, K4, exor(W,61));	subRound(D, E, A, B, C, f4, K4, exor(W,62));	subRound(C, D, E, A, B, f4, K4, exor(W,63));	subRound(B, C, D, E, A, f4, K4, exor(W,64));	subRound(A, B, C, D, E, f4, K4, exor(W,65));	subRound(E, A, B, C, D, f4, K4, exor(W,66));	subRound(D, E, A, B, C, f4, K4, exor(W,67));	subRound(C, D, E, A, B, f4, K4, exor(W,68));	subRound(B, C, D, E, A, f4, K4, exor(W,69));	subRound(A, B, C, D, E, f4, K4, exor(W,70));	subRound(E, A, B, C, D, f4, K4, exor(W,71));	subRound(D, E, A, B, C, f4, K4, exor(W,72));	subRound(C, D, E, A, B, f4, K4, exor(W,73));	subRound(B, C, D, E, A, f4, K4, exor(W,74));	subRound(A, B, C, D, E, f4, K4, exor(W,75));	subRound(E, A, B, C, D, f4, K4, exor(W,76));	subRound(D, E, A, B, C, f4, K4, exor(W,77));	subRound(C, D, E, A, B, f4, K4, exor(W,78));	subRound(B, C, D, E, A, f4, K4, exor(W,79));	/* Build message digest */	digest[0] += A;	digest[1] += B;	digest[2] += C;	digest[3] += D;	digest[4] += E;}/* * shsUpdate - update SHS with arbitrary length data */static voidshsUpdate(HASH *state, USB8 *buffer, USB32 count){	SHS_INFO *dig = &state->h_union.h_shs;	/* digest state */	USB32 datalen = dig->datalen;	USB32 cpylen;#if CALC_BYTE_ORDER == LITTLE_ENDIAN	unsigned int i;#endif	/*	 * Update the full count, even if some of it is buffered for later	 */	SHSCOUNT(dig, count);	/* determine the size we need to copy */	cpylen = SHS_CHUNKSIZE - datalen;	/* case: new data will not fill the buffer */	if (cpylen > count) {		memcpy((char *)dig->data + datalen,		       (char *)buffer, count);		dig->datalen = datalen+count;		return;	}	/* case: buffer will be filled */	memcpy((char *)dig->data + datalen, (char *)buffer, cpylen);	/*	 * process data in SHS_CHUNKSIZE chunks	 */	for (;;) {#if CALC_BYTE_ORDER == LITTLE_ENDIAN		if (state->bytes) {			for (i=0; i < SHS_CHUNKWORDS; ++i) {				SWAP_B8_IN_B32(dig->data+i, dig->data+i);			}		}#endif		shsTransform(dig->digest, dig->data);		buffer += cpylen;		count -= cpylen;		if (count < SHS_CHUNKSIZE)			break;		cpylen = SHS_CHUNKSIZE;		memcpy((char *) dig->data, (char *) buffer, cpylen);	}	/*	 * Handle any remaining bytes of data.	 */	if (count > 0) {		memcpy((char *)dig->data, (char *)buffer, count);	}	dig->datalen = count;}/* * shsFinal - perform final SHS transforms * * At this point we have less than a full chunk of data remaining * (and possibly no data) in the shs state data buffer. * * First we append a final 0x80 byte. * * Next if we have more than 56 bytes, we will zero fill the remainder * of the chunk, transform and then zero fill the first 56 bytes. * If we have 56 or fewer bytes, we will zero fill out to the 56th * chunk byte.	Regardless, we wind up with 56 bytes data. * * Finally we append the 64 bit length on to the 56 bytes of data * remaining.  This final chunk is transformed. */static voidshsFinal(HASH *state){	SHS_INFO *dig = &state->h_union.h_shs;	/* digest state */	long count = (long)(dig->datalen);	USB32 lowBitcount;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -