📄 contents.m
字号:
%Write text describing the m-files in this directory%Write text describing the m-files in this directory (continued)% % ar1_like : evaluate ols model with AR1 errors log-likelihood% ar_g : MCMC estimates Bayesian heteroscedastic AR(k) model % ar_gd : An example using ar_g(),% box_lik : evaluate Box-Cox model likelihood function% boxc_trans : compute box-cox transformation% boxcox : box-cox regression using a single scalar transformation% boxcox_d : An example using box_cox(),% demo_reg : demo using most all regression functions% felogit : computes binomial logistic regression with a one-dimensional fixed effect:% felogit_demo : demonstrate use of felogit.m% felogit_lik : Compute probabilities and value of log-likelihood% garch_like : log likelihood for garch model% garch_sigt : generate garch model sigmas over time % garch_trans : function to transform garch(1,1) a0,a1,a2 garch parameters% ham_itrans : inverse transform Hamilton model parameters% ham_like : log likelihood function for Hamilton's model% ham_trans : transform Hamilton model parameters% hwhite : computes White's adjusted heteroscedastic% hwhite_d : An example of hwhite(),% ksmooth : Kim's smoothing for Hamilton() model% lad : least absolute deviations regression% lad_d : An example using lad(),% lmtest : computes LM-test for two regressions% lmtest_d : demo using lmtest() % lo_like : evaluate logit log-likelihood% logit : computes Logit Regression% logit_d : An example of logit(),% make_html : makes HTML verion of contents.m files for the Econometrics Toolbox% mlogit : multinomial logistic regression % mlogit_d : An example of mlogit(),% mlogit_lik : Calculates likelihood for multinomial logit regression model.% multilogit : implements multinomial logistic regression% multilogit_demo : demonstrates the use of multilogit.m% multilogit_lik : Computes value of log likelihood function for multinomial logit regression% nwest : computes Newey-West adjusted heteroscedastic-serial% nwest_d : An example using nwest(),% ols : least-squares regression % ols_d : An example using ols(),% ols_g : MCMC estimates for the Bayesian heteroscedastic linear model% ols_gcbma : MC^3 x-matrix specification for homoscedastic OLS model% ols_gcbmad : Demo of ols_gcbma() model comparison function% ols_gd : demo of ols_g() % ols_gv : MCMC estimates for the Bayesian heteroscedastic linear model% ols_gvd : demo of ols_g() % olsar1 : computes maximum likelihood ols regression for AR1 errors% olsar1_d : demonstrate olsc, olsar1 routines% olsc : computes Cochrane-Orcutt ols Regression for AR1 errors% olsc_d : demonstrate ols_corc roc % olse : OLS regression returning only residual vector% olsrs : Restricted least-squares estimation% olsrs_d : An example using olsrs(),% olst : ols with t-distributed errors% olst_d : An example using olst(),% panel_d : Demonstrates use of panel data estimation% pfixed : performs Fixed Effects Estimation for Panel Data% phaussman : prints haussman test, use for testing the specification of the fixed or% plt_eqs : plots regression actual vs predicted and residuals for:% plt_gibbs : Plots output from Gibbs sampler regression models% plt_reg : plots regression actual vs predicted and residuals% plt_tvp : Plots output using tvp regression results structures% ppooled : performs Pooled Least Squares for Panel Data(for balanced or unbalanced data)% pr_like : evaluate probit log-likelihood% prandom : performs Random Effects Estimation for Panel Data% probit : computes Probit Regression% probit_d : demo of probit()% probit_g : MCMC sampler for the Bayesian heteroscedastic Probit model % probit_gd : demo of probit_g% prt_bmao : print results from ols_gcbma function% prt_eqs : Prints output from mutliple equation regressions% prt_felogit : Prints output from felogit function% prt_gibbs : Prints output from Gibbs sampler regression models% prt_multilogit : Prints output from multilogit function% prt_panel : Prints Panel models output% prt_reg : Prints output using regression results structures% prt_swm : Prints output from Switching regression models% prt_tvp : Prints output using tvp() regression results structures% ridge : computes Hoerl-Kennard Ridge Regression% ridge_d : An example using ridge(), bkw()% ridge_d2 : An example using ridge(), bkw()% robust : robust regression using iteratively reweighted% robust_d : An example using robust(),% rtrace : Plots ntheta ridge regression estimates % sur : computes seemingly unrelated regression estimates% sur_d : An example using sur(),% switch_em : Switching Regime regression (EM-estimation)% switch_emd : Demo of switch_em% theil : computes Theil-Goldberger mixed estimator% theil_d : An example using theil(),% thsls : computes Three-Stage Least-squares Regression% thsls_d : An example using thsls(),% to_llike : evaluate tobit log-likelihood% to_rlike : evaluate tobit log-likelihood% tobit : computes Tobit Regression% tobit_d : An example using tobit()% tobit_d2 : An example using tobit()% tobit_g : MCMC sampler for Bayesian Tobit model % tobit_gd : An example using tobit_g()% tobit_gd2 : An example using tobit_g()% tsls : computes Two-Stage Least-squares Regression% tsls_d : An example using tsls(),% tvp : time-varying parameter maximum likelihood estimation% tvp_d : An example using tvp(),% tvp_garch : time-varying parameter estimation with garch(1,1) errors% tvp_garch_like : log likelihood for tvp_garch model% tvp_garchd : An example using tvp_garch(),% tvp_like : returns -log likelihood function for tvp model% tvp_markov : time-varying parameter model with Markov switching error variances% tvp_markov_lik : log-likelihood for Markov-switching TVP model % tvp_markovd : An example using tvp_markov(),% tvp_markovd2 : An example using tvp_markov(), and tvp_garch()% tvp_zglike : returns -log likelihood function for tvp model with Zellner's g-prior% waldf : computes Wald F-test for two regressions% waldf_d : demo using waldf()
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -