⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 contents.m

📁 时间序列分析中常用到的matlab代码
💻 M
字号:
%Write text describing the m-files in this directory%Write text describing the m-files in this directory (continued)%   %         ar1_like : evaluate ols model with AR1 errors log-likelihood%             ar_g : MCMC estimates Bayesian heteroscedastic AR(k) model %            ar_gd : An example using ar_g(),%          box_lik : evaluate Box-Cox model likelihood function%       boxc_trans : compute box-cox transformation%           boxcox : box-cox regression using a single scalar transformation%         boxcox_d : An example using box_cox(),%         demo_reg : demo using most all regression functions%          felogit : computes binomial logistic regression with a one-dimensional fixed effect:%     felogit_demo : demonstrate use of felogit.m%      felogit_lik : Compute probabilities and value of log-likelihood%       garch_like : log likelihood for garch model%       garch_sigt : generate garch model sigmas over time %      garch_trans : function to transform garch(1,1) a0,a1,a2 garch parameters%       ham_itrans : inverse transform Hamilton model parameters%         ham_like : log likelihood function for Hamilton's model%        ham_trans : transform Hamilton model parameters%           hwhite : computes White's adjusted heteroscedastic%         hwhite_d : An example of  hwhite(),%          ksmooth : Kim's smoothing for Hamilton() model%              lad : least absolute deviations regression%            lad_d : An example using lad(),%           lmtest : computes LM-test for two regressions%         lmtest_d : demo using lmtest() %          lo_like : evaluate logit log-likelihood%            logit : computes Logit Regression%          logit_d : An example of logit(),%        make_html : makes HTML verion of contents.m files for the Econometrics Toolbox%           mlogit : multinomial logistic regression %         mlogit_d : An example of mlogit(),%       mlogit_lik : Calculates likelihood for multinomial logit regression model.%       multilogit : implements multinomial logistic regression%  multilogit_demo : demonstrates the use of multilogit.m%   multilogit_lik : Computes value of log likelihood function for multinomial logit regression%            nwest : computes Newey-West adjusted heteroscedastic-serial%          nwest_d : An example using nwest(),%              ols : least-squares regression %            ols_d : An example using ols(),%            ols_g : MCMC estimates for the Bayesian heteroscedastic linear model%        ols_gcbma : MC^3 x-matrix specification for homoscedastic OLS model%       ols_gcbmad : Demo of ols_gcbma() model comparison function%           ols_gd : demo of ols_g() %           ols_gv : MCMC estimates for the Bayesian heteroscedastic linear model%          ols_gvd : demo of ols_g() %           olsar1 : computes maximum likelihood ols regression for AR1 errors%         olsar1_d : demonstrate olsc, olsar1 routines%             olsc : computes Cochrane-Orcutt ols Regression for AR1 errors%           olsc_d : demonstrate ols_corc roc %             olse : OLS regression returning only residual vector%            olsrs : Restricted least-squares estimation%          olsrs_d : An example using olsrs(),%             olst : ols with t-distributed errors%           olst_d : An example using olst(),%          panel_d : Demonstrates use of panel data estimation%           pfixed : performs Fixed Effects Estimation for Panel Data%        phaussman : prints haussman test, use for testing the specification of the fixed or%          plt_eqs : plots regression actual vs predicted and residuals for:%        plt_gibbs : Plots output from Gibbs sampler regression models%          plt_reg : plots regression actual vs predicted and residuals%          plt_tvp : Plots output using tvp regression results structures%          ppooled : performs Pooled Least Squares for Panel Data(for balanced or unbalanced data)%          pr_like : evaluate probit log-likelihood%          prandom : performs Random Effects Estimation for Panel Data%           probit : computes Probit Regression%         probit_d : demo of probit()%         probit_g : MCMC sampler for the Bayesian heteroscedastic Probit model  %        probit_gd : demo of probit_g%         prt_bmao : print results from ols_gcbma function%          prt_eqs : Prints output from mutliple equation regressions%      prt_felogit : Prints output from felogit function%        prt_gibbs : Prints output from Gibbs sampler regression models%   prt_multilogit : Prints output from multilogit function%        prt_panel : Prints Panel models output%          prt_reg : Prints output using regression results structures%          prt_swm : Prints output from Switching regression models%          prt_tvp : Prints output using tvp() regression results structures%            ridge : computes Hoerl-Kennard Ridge Regression%          ridge_d : An example using ridge(), bkw()%         ridge_d2 : An example using ridge(), bkw()%           robust : robust regression using iteratively reweighted%         robust_d : An example using robust(),%           rtrace : Plots ntheta ridge regression estimates %              sur : computes seemingly unrelated regression estimates%            sur_d : An example using sur(),%        switch_em : Switching Regime regression (EM-estimation)%       switch_emd : Demo of switch_em%            theil : computes Theil-Goldberger mixed estimator%          theil_d : An example using theil(),%            thsls : computes Three-Stage Least-squares Regression%          thsls_d : An example using thsls(),%         to_llike : evaluate tobit log-likelihood%         to_rlike : evaluate tobit log-likelihood%            tobit : computes Tobit Regression%          tobit_d : An example using tobit()%         tobit_d2 : An example using tobit()%          tobit_g : MCMC sampler for Bayesian Tobit model  %         tobit_gd : An example using tobit_g()%        tobit_gd2 : An example using tobit_g()%             tsls : computes Two-Stage Least-squares Regression%           tsls_d : An example using tsls(),%              tvp : time-varying parameter maximum likelihood estimation%            tvp_d : An example using tvp(),%        tvp_garch : time-varying parameter estimation with garch(1,1) errors%   tvp_garch_like : log likelihood for tvp_garch model%       tvp_garchd : An example using tvp_garch(),%         tvp_like : returns -log likelihood function for tvp model%       tvp_markov : time-varying parameter model with Markov switching error variances%   tvp_markov_lik : log-likelihood for Markov-switching TVP model %      tvp_markovd : An example using tvp_markov(),%     tvp_markovd2 : An example using tvp_markov(), and tvp_garch()%       tvp_zglike : returns -log likelihood function for tvp model with Zellner's g-prior%            waldf : computes Wald F-test for two regressions%          waldf_d : demo using waldf() 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -