📄 olspanelj.m
字号:
function results = olspanelJ(p,y,x);
% PURPOSE: Computes regression with fully robust standard
% errors (see Woolridge (2002) eqn (7.26))
% NOTE: Automatically adds constant
%---------------------------------------------------
% USAGE: results = olspanelJ(p,y,x)
% where: p = NTx1 vector of panel variables
% y = NTx1 vector of independent variables
% x = NTxK matrix of regressors (excluding constant)
%---------------------------------------------------
% RETURNS: a structure
% results.meth = 'ols'
% results.beta = bhat (nvar x 1)
% results.tstat = t-stats (nvar x 1)
% results.yhat = yhat (nobs x 1)
% results.resid = residuals (nobs x 1)
% results.sige = e'*e/(n-k) scalar
% results.rsqr = rsquared scalar
% results.rbar = rbar-squared scalar
% results.dw = Durbin-Watson Statistic
% results.nobs = nobs
% results.nvar = nvars
% results.y = y data vector (nobs x 1)
% results.varmat= nvar x nvar covariance matrix
%---------------------------------------------------
% Requires ols() function from LeSage Econometrics toolbox
%---------------------------------------------------
% Judson Caskey
% University of Michigan
% jcaskey@umich.edu
%---------------------------------------------------
if size(p,1) ~= size(y,1) | size(p,1) ~= size(x,1) | size(y,1) ~= size(x,1)
error('p,x and y must have same number of rows');
elseif size(p,2) ~= 1 | size(y,2) ~= 1
error('p and y must be column vectors');
end;
panelitems = unique(p);
x=[x,ones(size(x,1),1)];
resultstmp = ols(y,x);
bmat=zeros(size(x,2),size(x,2));
for k=1:1:size(panelitems,1);
xtmp=x(p==panelitems(k),:);
utmp=resultstmp.resid(p==panelitems(k));
gtmp=utmp'*xtmp;
bmat=bmat+gtmp'*gtmp;
end;
% Add robust variance and replace t-statistics
m = size(panelitems,1);
n = size(x,1);
results=resultstmp;
results = rmfield(results,'bint');
results.varmat=m*n/(m-1)/(n-1)*inv(x'*x)*bmat*inv(x'*x);
results.tstat=results.beta./sqrt(diag(results.varmat));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -