📄 bls2.c
字号:
Description ----------- dgemm2() performs one of the matrix-matrix operations C := alpha * op(A) * op(B) + beta * C, where op(X) = X or op(X) = X', alpha and beta are scalars, and A, B and C are matrices, with op(A) an m by k matrix, op(B) a k by n matrix and C an m by n matrix. Parameters ---------- (input) transa TRANSP indicates op(A) = A' is to be used in the multiplication NTRANSP indicates op(A) = A is to be used in the multiplication transb TRANSP indicates op(B) = B' is to be used in the multiplication NTRANSP indicates op(B) = B is to be used in the multiplication m on entry, m specifies the number of rows of the matrix op(A) and of the matrix C. m must be at least zero. Unchanged upon exit. n on entry, n specifies the number of columns of the matrix op(B) and of the matrix C. n must be at least zero. Unchanged upon exit. k on entry, k specifies the number of columns of the matrix op(A) and the number of rows of the matrix B. k must be at least zero. Unchanged upon exit. alpha a scalar multiplier a matrix A as a 2-dimensional array. When transa = NTRANSP, the leading m by k part of a must contain the matrix A. Otherwise, the leading k by m part of a must contain the matrix A. b matrix B as a 2-dimensional array. When transb = NTRANSP, the leading k by n part of a must contain the matrix B. Otherwise, the leading n by k part of a must contain the matrix B. beta a scalar multiplier. When beta is supplied as zero then C need not be set on input. c matrix C as a 2-dimensional array. On entry, the leading m by n part of c must contain the matrix C, except when beta = 0. In that case, c need not be set on entry. On exit, c is overwritten by the m by n matrix (alpha * op(A) * op(B) + beta * C). ***********************************************************************/void dgemm2(long transa, long transb, long m, long n, long k, double alpha, double **a, double **b, double beta, double **c){ long info; long i, j, l, nrowa, ncola, nrowb, ncolb; double temp, *atemp; info = 0; if ( transa != TRANSP && transa != NTRANSP ) info = 1; else if ( transb != TRANSP && transb != NTRANSP ) info = 2; else if ( m < 0 ) info = 3; else if ( n < 0 ) info = 4; else if ( k < 0 ) info = 5; if (info) { fprintf(stderr, "%s %1d %s\n", "*** ON ENTRY TO DGEMM2, PARAMETER NUMBER",info,"HAD AN ILLEGAL VALUE"); exit(info); } if (transa) { nrowa = k; ncola = m; } else { nrowa = m; ncola = k; } if (transb) { nrowb = n; ncolb = k; } else { nrowb = k; ncolb = n; } if (!m || !n || ((alpha == ZERO || !k) && beta == ONE)) return; if (alpha == ZERO) { if (beta == ZERO) for (i = 0; i < m; i++) for (j = 0; j < n; j++) c[i][j] = ZERO; else if (beta != ONE) for (i = 0; i < m; i++) for (j = 0; j < n; j++) c[i][j] *= beta; return; } if (beta == ZERO) for (i = 0; i < m; i++) for (j = 0; j < n; j++) c[i][j] = ZERO; else if (beta != ONE) for (i = 0; i < m; i++) for (j = 0; j < n; j++) c[i][j] *= beta; if (!transb) { switch(transa) { /* form C := alpha * A * B + beta * C */ case NTRANSP: for(l = 0; l < nrowa; l++) { atemp = *a++; for(j = 0; j < ncola; j++) { temp = *atemp * alpha; for(i = 0; i < ncolb; i++) c[l][i] += temp * b[j][i]; atemp++; } } break; /* form C := alpha * A' * B + beta * C */ case TRANSP: for(l = 0; l < nrowa; l++) { atemp = *a++; for(j = 0; j < ncola; j++) { temp = *atemp * alpha; for(i = 0; i < ncolb; i++) c[j][i] += temp * b[l][i]; atemp++; } } break; } } else { switch(transa) { /* form C := alpha * A * B' + beta * C */ case NTRANSP: for(l = 0; l < nrowa; l++) { for(j = 0; j < nrowb; j++) { atemp = *a; for(i = 0; i < ncolb; i++) c[l][j] += (*atemp++) * alpha * b[j][i]; } a++; } break; /* form C := alpha * A' * B' + beta * C */ case TRANSP: for(i = 0; i < ncola; i++) { for (l = 0; l < nrowb; l++) { temp = ZERO; for(j = 0; j < nrowa; j++) temp += a[j][i] * b[l][j]; c[i][l] += alpha * temp; } } break; } }}#include <math.h>#define ZERO 0.0#define ONE 1.0#define RDWARF 3.834e-20#define RGIANT 1.304e19/*********************************************************************** * * * enorm() * * a C translation of the Fortran-77 version by Burton, Garbow, * * Hillstrom and More of Argonne National Laboratory. * * * ***********************************************************************//*********************************************************************** Description ----------- given an n-vector x, this function calculates the Euclidean norm of x. The Euclidean norm is computed by accumulating the sum of squares in three different sums. The sums of squares for the small and large components are scaled so that no overflows occur. Non-destructive underflows are permitted. Underflows and overflows do not occur in the computation of the unscaled sum of squares for the longermediate components. The definitions of small, longermediate and large components depend on two constants, rdwarf and rgiant. The restrictions on these constants are that rdwarf**2 not underflow and rgiant**2 not overflow. The constants given here are suitable for every known computer. The function returns the Euclidean norm of vector x in double precision. Parameters ---------- n number of elements in vector x x linear array of vector x whose Euclidean norm is to be calculated ***********************************************************************/double enorm(long n, double *x){ double norm2, agiant, doublen, s1, s2, s3, xabs, x1max, x3max; long i; s1 = ZERO; s2 = ZERO; s3 = ZERO; x1max = ZERO; x3max = ZERO; doublen = (double)n; agiant = RGIANT / doublen; for (i = 0; i < n; i++) { xabs = fabs(x[i]); /* summing components of vector that need no scaling */ if (xabs > RDWARF && xabs < agiant) s2 += xabs * xabs; else { /* underflow... */ if (xabs <= RDWARF) { if (xabs > x3max) { s3 = ONE + s3 * (x3max/xabs) * (x3max/xabs); x3max = xabs; } else if (xabs != 0) s3 += (xabs/x3max) * (xabs/x3max); } /* overflow... */ else { /* summing large components of vector */ if (xabs <= x1max) s1 += (xabs/x1max) * (xabs/x1max); else { s1 = ONE + s1 * (x1max/xabs) * (x1max/xabs); x1max = xabs; } } } } if (s1 != ZERO) norm2 = x1max * sqrt(s1 + (s2/x1max) / x1max); else if (s2 != ZERO) { if (s2 >= x3max) norm2 = sqrt(s2 * (ONE + (x3max/s2) * (x3max*s3))); else norm2 = sqrt(x3max * ((s2/x3max) + (x3max*s3))); } else norm2 = x3max * sqrt(s3); return(norm2);}#define ZERO 0.0/*********************************************************************** * * * formbigs() * * * ***********************************************************************//*********************************************************************** Description ----------- This function forms the block upper-bidiagonal or the symmetric block tridiagonal matrix S from the block Lanczos algorithm in Phase 1 of blklan1.c or blklan2.c, respectively. Arguments --------- (input) r, s submatrices from which the bidiagonal block matrix S (Phase 1 of blklan1.c) is formed. The following data structure is assumed for the submatrices s[j] and r[j], where j = 0, 1, ..., p-1. For blklan1.c, s[j] and r[j] are both upper-triangular. For blklan2.c, s[j] is dense and symmetric and r[j] is upper-triangular. p number of block partitions used in blklan1.c. s = s[0] r= r[0] ---- ---- s[1] r[1] ---- ---- . . . . . . s[p-1] r[p-2] n dimension of bigs (output) bigs The 2-dimensional array bigs will contain this matrix in the following band matrix format: EXAMPLE WITH 4 SUP. DIAGONALS: TRANSPOSE OF [0 0 0 0--1ST SUP. DIAGONAL----] ------------ [0 0 0 ---2ND SUP. DIAGONAL----] [0 0 -----3RD SUP. DIAGONAL----] [0 -------4TH SUP. DIAGONAL----] [-------- MAIN DIAGONAL--------] Note that the super-diagonals and main diagonal of S are stored in COLUMNS of bigs (bigs is n by n). ***********************************************************************/void formbigs(long n, long ndp, double **r, double **s, double **bigs){ long p, i, j, k, kk, m, row, col; p = n / ndp; /* load main diagonal of bigs */ j = 0; for (i = 0; i < p; i++) for (k = 0; k < ndp; k++) { bigs[j][ndp] = s[j][k]; j++; } /* load super-diagonals of bigs (from top to bottom) */ for (i = 0; i < ndp; i++) { /* pad zeros at start of a column */ for (kk = 0; kk < ndp - i; kk++) bigs[kk][i] = ZERO; /* load first row of bigs with main diagonals of r[j] */ if (i == 0) { j = 0; for (m = 0; m < p - 1; m++) for (k = 0; k < ndp; k++) bigs[kk++][0] = r[j++][k]; } else { m = 0; for (j = 0; j < p; j++) { row = m; col = ndp - i; /* load elements form s[j] submatrices */ while (col < ndp) bigs[kk++][i] = s[row++][col++]; /* load elements form r[j] submatrices */ if (j < p - 1) { col = i; row = m; while (col < ndp) bigs[kk++][i] = r[row++][col++]; } m += ndp; } } }}#include <stdio.h>#define ZERO 0.0#define ONE 1.0long imax(long, long);/*********************************************************************** * * * dsbmv() * * * ***********************************************************************//*********************************************************************** Description ----------- The function performs the matrix-vector operation y := alpha * A * y + beta * y, where alpha and beta are scalars, x and y are n-element vectors and A is an n by n symmetric band matrix, with k super-diagonals. Parameters ---------- n number of rows of matrix A; n must be at least 0. Unchanged upon exit. k number of super-diagonals of matrix A a 2-dimensional array whose leading n by (k + 1) part must contain the upper triangular band part of the symmetric matrix, supplied row by row, with the leading diagonal of the matrix in column (k + 1) of the array, the first super-diagonal starting at position 2 in column k, and so on. The top left k by k triangle of the array A is not referenced. x linear array of dimension of at least n. Before
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -