⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 iir_cfs.cpp

📁 用C写的很好用的EQ均衡器
💻 CPP
字号:
/* *   Copyright (C) 2002-2006  Felipe Rivera <liebremx at users.sourceforge.net> * *   This program is free software; you can redistribute it and/or modify *   it under the terms of the GNU General Public License as published by *   the Free Software Foundation; either version 2 of the License, or *   (at your option) any later version. * *   This program is distributed in the hope that it will be useful, *   but WITHOUT ANY WARRANTY; without even the implied warranty of *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *   GNU General Public License for more details. * *   You should have received a copy of the GNU General Public License *   along with this program; if not, write to the Free Software *   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * *   Coefficient stuff * *   $Id: iir_cfs.c,v 1.2 2006/01/15 00:17:46 liebremx Exp $ */#include "iir_cfs.h"#include <stdio.h>#include <math.h>/***************************  * IIR filter coefficients * ***************************/ #pragma pack(push,1)static sIIRCoefficients iir_cf10_11k_11025[10] ;static sIIRCoefficients iir_cf10_22k_22050[10] ;static sIIRCoefficients iir_cforiginal10_44100[10] ;static sIIRCoefficients iir_cforiginal10_48000[10] ;static sIIRCoefficients iir_cf10_44100[10] ;static sIIRCoefficients iir_cf10_48000[10] ;static sIIRCoefficients iir_cf15_44100[15] ;static sIIRCoefficients iir_cf15_48000[15] ;static sIIRCoefficients iir_cf25_44100[25] ;static sIIRCoefficients iir_cf25_48000[25] ;static sIIRCoefficients iir_cf31_44100[31] ;static sIIRCoefficients iir_cf31_48000[31] ;#pragma pack(pop)/******************************************************************  * Definitions and data structures to calculate the coefficients ******************************************************************/static const double band_f011k[] ={ 31, 62, 125, 250, 500, 1000, 2000, 3000, 4000, 5500 };static const double band_f022k[] ={ 31, 62, 125, 250, 500, 1000, 2000, 4000, 8000, 11000 };static const double band_f010[] ={ 31, 62, 125, 250, 500, 1000, 2000, 4000, 8000, 16000 };static const double band_original_f010[] ={ 60, 170, 310, 600, 1000, 3000, 6000, 12000, 14000, 16000 };static const double band_f015[] ={ 25,40,63,100,160,250,400,630,1000,1600,2500,4000,6300,10000,16000};static const double band_f025[] ={ 20,31.5,40,50,80,100,125,160,250,315,400,500,800,  1000,1250,1600,2500,3150,4000,5000,8000,10000,12500,16000,20000};static const double band_f031[] ={ 20,25,31.5,40,50,63,80,100,125,160,200,250,315,400,500,630,800,  1000,1250,1600,2000,2500,3150,4000,5000,6300,8000,10000,12500,16000,20000};#define GAIN_F0 1.0#define GAIN_F1 GAIN_F0 / M_SQRT2#define SAMPLING_FREQ 44100.0#define TETA(f) (2*M_PI*(double)f/bands[n].sfreq)#define TWOPOWER(value) (value * value)#define BETA2(tf0, tf) \(TWOPOWER(GAIN_F1)*TWOPOWER(cos(tf0)) \ - 2.0 * TWOPOWER(GAIN_F1) * cos(tf) * cos(tf0) \ + TWOPOWER(GAIN_F1) \ - TWOPOWER(GAIN_F0) * TWOPOWER(sin(tf)))#define BETA1(tf0, tf) \    (2.0 * TWOPOWER(GAIN_F1) * TWOPOWER(cos(tf)) \     + TWOPOWER(GAIN_F1) * TWOPOWER(cos(tf0)) \     - 2.0 * TWOPOWER(GAIN_F1) * cos(tf) * cos(tf0) \     - TWOPOWER(GAIN_F1) + TWOPOWER(GAIN_F0) * TWOPOWER(sin(tf)))#define BETA0(tf0, tf) \    (0.25 * TWOPOWER(GAIN_F1) * TWOPOWER(cos(tf0)) \     - 0.5 * TWOPOWER(GAIN_F1) * cos(tf) * cos(tf0) \     + 0.25 * TWOPOWER(GAIN_F1) \     - 0.25 * TWOPOWER(GAIN_F0) * TWOPOWER(sin(tf)))#define GAMMA(beta, tf0) ((0.5 + beta) * cos(tf0))#define ALPHA(beta) ((0.5 - beta)/2.0)struct {    sIIRCoefficients *coeffs;    const double *cfs;    double octave;    int band_count;    double sfreq;} bands[] = {  { iir_cf10_11k_11025,     band_f011k,         1.0,     10, 11025.0 },  { iir_cf10_22k_22050,     band_f022k,         1.0,     10, 22050.0 },  { iir_cforiginal10_44100, band_original_f010, 1.0,     10, 44100.0 },  { iir_cforiginal10_48000, band_original_f010, 1.0,     10, 48000.0 },  { iir_cf10_44100,         band_f010,          1.0,     10, 44100.0 },  { iir_cf10_48000,         band_f010,          1.0,     10, 48000.0 },  { iir_cf15_44100,         band_f015,          2.0/3.0, 15, 44100.0 },  { iir_cf15_48000,         band_f015,          2.0/3.0, 15, 48000.0 },  { iir_cf25_44100,         band_f025,          1.0/3.0, 25, 44100.0 },  { iir_cf25_48000,         band_f025,          1.0/3.0, 25, 48000.0 },  { iir_cf31_44100,         band_f031,          1.0/3.0, 31, 44100.0 },  { iir_cf31_48000,         band_f031,          1.0/3.0, 31, 48000.0 },  { 0 }};/************* * Functions * *************//* Get the coeffs for a given number of bands and sampling frequency */sIIRCoefficients* get_coeffs(int *bands, int sfreq, bool use_xmms_original_freqs){  sIIRCoefficients *iir_cf = 0;  switch(sfreq)  {    case 11025: iir_cf = iir_cf10_11k_11025;                *bands = 10;                break;    case 22050: iir_cf = iir_cf10_22k_22050;                *bands = 10;                break;    case 48000:                 switch(*bands)                {                  case 31: iir_cf = iir_cf31_48000; break;                  case 25: iir_cf = iir_cf25_48000; break;                  case 15: iir_cf = iir_cf15_48000; break;                  default:                           iir_cf = use_xmms_original_freqs ? iir_cforiginal10_48000 : iir_cf10_48000;                           break;                }                break;    default:                switch(*bands)                {                  case 31: iir_cf = iir_cf31_44100; break;                  case 25: iir_cf = iir_cf25_44100; break;                  case 15: iir_cf = iir_cf15_44100; break;                  default:                           iir_cf = use_xmms_original_freqs ? iir_cforiginal10_44100 : iir_cf10_44100;                           break;                }                break;  }  return iir_cf;}/* Get the freqs at both sides of F0. These will be cut at -3dB */static void find_f1_and_f2(double f0, double octave_percent, double *f1, double *f2){    double octave_factor = pow(2.0, octave_percent/2.0);    *f1 = f0/octave_factor;    *f2 = f0*octave_factor;}/* Find the quadratic root * Always return the smallest root */static int find_root(double a, double b, double c, double *x0) {  double k = c-((b*b)/(4.*a));  double h = -(b/(2.*a));  double x1 = 0.;  if (-(k/a) < 0.)    return -1;   *x0 = h - sqrt(-(k/a));  x1 = h + sqrt(-(k/a));  if (x1 < *x0)    *x0 = x1;  return 0;}/* Calculate all the coefficients as specified in the bands[] array */void calc_coeffs(){  int i, n;  double f1, f2;  double x0;  n = 0;  for (; bands[n].cfs; n++) {    double *freqs = (double *)bands[n].cfs;    for (i=0; i<bands[n].band_count; i++)    {      /* Find -3dB frequencies for the center freq */      find_f1_and_f2(freqs[i], bands[n].octave, &f1, &f2);      /* Find Beta */      if ( find_root(            BETA2(TETA(freqs[i]), TETA(f1)),             BETA1(TETA(freqs[i]), TETA(f1)),             BETA0(TETA(freqs[i]), TETA(f1)),             &x0) == 0)      {        /* Got a solution, now calculate the rest of the factors */        /* Take the smallest root always (find_root returns the smallest one)         *         * NOTE: The IIR equation is         *	y[n] = 2 * (alpha*(x[n]-x[n-2]) + gamma*y[n-1] - beta*y[n-2])         *  Now the 2 factor has been distributed in the coefficients         */        /* Now store the coefficients */        bands[n].coeffs[i].beta  = (float)(2.0 * x0);        bands[n].coeffs[i].alpha = (float)(2.0 * ALPHA(x0));        bands[n].coeffs[i].gamma = (float)(2.0 * GAMMA(x0, TETA(freqs[i])));#ifdef DEBUG        printf("Freq[%d]: %f. Beta: %.10e Alpha: %.10e Gamma %.10e\n",            i, freqs[i], bands[n].coeffs[i].beta,            bands[n].coeffs[i].alpha, bands[n].coeffs[i].gamma);#endif      } else {        /* Shouldn't happen */        bands[n].coeffs[i].beta = 0.;        bands[n].coeffs[i].alpha = 0.;        bands[n].coeffs[i].gamma = 0.;        printf("  **** Where are the roots?\n");      }    }// for i  }//for n}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -