📄 rk4ode2.mht
字号:
From: <Saved by Windows Internet Explorer 7>
Subject:
Date: Tue, 12 May 2009 09:54:42 -0700
MIME-Version: 1.0
Content-Type: text/html;
charset="Windows-1252"
Content-Transfer-Encoding: 7bit
Content-Location: http://www.mece.ualberta.ca/Courses/mec390/390code/rk4ode2.m
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.3350
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=windows-1252">
<META content="MSHTML 6.00.6000.16825" name=GENERATOR></HEAD>
<BODY><PRE>function [t,x,v] = rk4ode2(func, a, b, x0, xd0, h);
% Solution of 2nd order ODE using Runge-Kutta 4th order
% with constant step size. ODE solved is converted to
% two 1st order equations. The RHS of the system is
% dv/dt = func(t, x, v)
% dx/dt = v
% See for example rhs_smd.m for forced spring-mass-damper
%
% USAGE: [t, x, v] = rk4ode2(func,a,b,x0,xd0,h)
%
% input func = name of external function to evaluate the RHS
% of the ODE (eg 'rhs_smd')
% a, b = limits of integration
% x0 = initial condition (position)
% xd0 = initial condition (velocity)
% h = stepsize
%
% output [t, x, v] = solution vectors
t = [a];
x = [x0];
v = [xd0];
i = 1;
while t(i) < b
k1x = v(i);
k1v = feval(func, t(i) , x(i) , v(i) );
k2x = v(i)+k1v*h/2;
k2v = feval(func, t(i)+h/2, x(i)+k1x*h/2 , v(i)+k1v*h/2 );
k3x = v(i)+k2v*h/2;
k3v = feval(func, t(i)+h/2, x(i)+k2x*h/2 , v(i)+k2v*h/2 );
k4x = v(i)+k3v*h;
k4v = feval(func, t(i)+h , x(i)+k3x*h , v(i)+k3v*h );
i = i+1;
t(i) = t(i-1) + h;
x(i) = x(i-1) + (k1x + 2*k2x + 2*k3x + k4x)*h/6;
v(i) = v(i-1) + (k1v + 2*k2v + 2*k3v + k4v)*h/6;
end
</PRE></BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -