📄 shadowfactory.java
字号:
public float getOpacity() {
return opacity;
}
/**
* <p>Sets the opacity used by the factory to generate shadows.</p>
* <p>Consecutive calls to {@link #createShadow} will all use this color
* until it is set again.</p>
* <p>The opacity is comprised between 0.0f and 1.0f; 0.0f being fully
* transparent and 1.0f fully opaque. If you provide a value out of these
* boundaries, it will be restrained to the closest boundary.</p>
* @param shadowOpacity the generated shadows opacity
*/
public void setOpacity(final float shadowOpacity) {
float oldOpacity = this.opacity;
if (shadowOpacity < 0.0) {
this.opacity = 0.0f;
} else if (shadowOpacity > 1.0f) {
this.opacity = 1.0f;
} else {
this.opacity = shadowOpacity;
}
changeSupport.firePropertyChange(OPACITY_CHANGED_PROPERTY,
new Float(oldOpacity),
new Float(this.opacity));
}
/**
* <p>Gets the size in pixel used by the factory to generate shadows.</p>
* @return this factory's shadow size
*/
public int getSize() {
return size;
}
/**
* <p>Sets the size, in pixels, used by the factory to generate shadows.</p>
* <p>The size defines the blur radius applied to the shadow to create the
* fuzziness.</p>
* <p>There is virtually no limit to the size but it has an impact on shadow
* generation performances. The greater this value, the longer it will take
* to generate the shadow. Remember the generated shadow image dimensions
* are computed as follow:
* <ul>
* <li>new width = original width + 2 * shadow size</li>
* <li>new height = original height + 2 * shadow size</li>
* </ul>
* The size cannot be negative. If you provide a negative value, the size
* will be 0 instead.</p>
* @param shadowSize the generated shadows size in pixels (fuzziness)
*/
public void setSize(final int shadowSize) {
int oldSize = this.size;
if (shadowSize < 0) {
this.size = 0;
} else {
this.size = shadowSize;
}
changeSupport.firePropertyChange(SIZE_CHANGED_PROPERTY,
new Integer(oldSize),
new Integer(this.size));
}
/**
* <p>Generates the shadow for a given picture and the current properties
* of the factory.</p>
* <p>The generated shadow image dimensions are computed as follow:
* <ul>
* <li>new width = original width + 2 * shadow size</li>
* <li>new height = original height + 2 * shadow size</li>
* </ul></p>
* <p>The time taken by a call to this method depends on the size of the
* shadow, the larger the longer it takes, and on the selected rendering
* algorithm.</p>
* @param image the picture from which the shadow must be cast
* @return the picture containing the shadow of <code>image</code>
*/
public BufferedImage createShadow(final BufferedImage image) {
if (hints.get(KEY_BLUR_QUALITY) == VALUE_BLUR_QUALITY_HIGH) {
// the high quality algorithm is a 3-pass algorithm
// it goes through all the pixels of the original picture at least
// three times to generate the shadow
// it is easy to understand but very slow
BufferedImage subject = prepareImage(image);
BufferedImage shadow = new BufferedImage(subject.getWidth(),
subject.getHeight(),
BufferedImage.TYPE_INT_ARGB);
BufferedImage shadowMask = createShadowMask(subject);
getLinearBlurOp(size).filter(shadowMask, shadow);
return shadow;
}
// call the fast rendering algorithm
return createShadowFast(image);
}
// prepares the picture for the high quality rendering algorithm
private BufferedImage prepareImage(final BufferedImage image) {
BufferedImage subject = new BufferedImage(image.getWidth() + size * 2,
image.getHeight() + size * 2,
BufferedImage.TYPE_INT_ARGB);
Graphics2D g2 = subject.createGraphics();
g2.drawImage(image, null, size, size);
g2.dispose();
return subject;
}
// fast rendering algorithm
// basically applies duplicates the picture and applies a size*size kernel
// in only one pass.
// the kernel is simulated by an horizontal and a vertical pass
// implemented by S閎astien Petrucci
private BufferedImage createShadowFast(final BufferedImage src) {
int shadowSize = this.size;
int srcWidth = src.getWidth();
int srcHeight = src.getHeight();
int dstWidth = srcWidth + size;
int dstHeight = srcHeight + size;
int left = (shadowSize - 1) >> 1;
int right = shadowSize - left;
int yStop = dstHeight - right;
BufferedImage dst = new BufferedImage(dstWidth, dstHeight,
BufferedImage.TYPE_INT_ARGB);
int shadowRgb = color.getRGB() & 0x00FFFFFF;
int[] aHistory = new int[shadowSize];
int historyIdx;
int aSum;
ColorModel srcColorModel = src.getColorModel();
WritableRaster srcRaster = src.getRaster();
int[] dstBuffer = ((DataBufferInt) dst.getRaster().getDataBuffer()).getData();
int lastPixelOffset = right * dstWidth;
float hSumDivider = 1.0f / size;
float vSumDivider = opacity / size;
// horizontal pass : extract the alpha mask from the source picture and
// blur it into the destination picture
for (int srcY = 0, dstOffset = left * dstWidth; srcY < srcHeight; srcY++) {
// first pixels are empty
for (historyIdx = 0; historyIdx < shadowSize; ) {
aHistory[historyIdx++] = 0;
}
aSum = 0;
historyIdx = 0;
// compute the blur average with pixels from the source image
for (int srcX = 0; srcX < srcWidth; srcX++) {
int a = (int) (aSum * hSumDivider); // calculate alpha value
dstBuffer[dstOffset++] = a << 24; // store the alpha value only
// the shadow color will be added in the next pass
aSum -= aHistory[historyIdx]; // substract the oldest pixel from the sum
// extract the new pixel ...
a = srcColorModel.getAlpha(srcRaster.getDataElements(srcX, srcY, null));
aHistory[historyIdx] = a; // ... and store its value into history
aSum += a; // ... and add its value to the sum
if (++historyIdx >= shadowSize) {
historyIdx -= shadowSize;
}
}
// blur the end of the row - no new pixels to grab
for (int i = 0; i < shadowSize; i++) {
int a = (int) (aSum * hSumDivider);
dstBuffer[dstOffset++] = a << 24;
// substract the oldest pixel from the sum ... and nothing new to add !
aSum -= aHistory[historyIdx];
if (++historyIdx >= shadowSize) {
historyIdx -= shadowSize;
}
}
}
// vertical pass
for (int x = 0, bufferOffset = 0; x < dstWidth; x++, bufferOffset = x) {
aSum = 0;
// first pixels are empty
for (historyIdx = 0; historyIdx < left;) {
aHistory[historyIdx++] = 0;
}
// and then they come from the dstBuffer
for (int y = 0; y < right; y++, bufferOffset += dstWidth) {
int a = dstBuffer[bufferOffset] >>> 24; // extract alpha
aHistory[historyIdx++] = a; // store into history
aSum += a; // and add to sum
}
bufferOffset = x;
historyIdx = 0;
// compute the blur average with pixels from the previous pass
for (int y = 0; y < yStop; y++, bufferOffset += dstWidth) {
int a = (int) (aSum * vSumDivider); // calculate alpha value
dstBuffer[bufferOffset] = a << 24 | shadowRgb; // store alpha value + shadow color
aSum -= aHistory[historyIdx]; // substract the oldest pixel from the sum
a = dstBuffer[bufferOffset + lastPixelOffset] >>> 24; // extract the new pixel ...
aHistory[historyIdx] = a; // ... and store its value into history
aSum += a; // ... and add its value to the sum
if (++historyIdx >= shadowSize) {
historyIdx -= shadowSize;
}
}
// blur the end of the column - no pixels to grab anymore
for (int y = yStop; y < dstHeight; y++, bufferOffset += dstWidth) {
int a = (int) (aSum * vSumDivider);
dstBuffer[bufferOffset] = a << 24 | shadowRgb;
aSum -= aHistory[historyIdx]; // substract the oldest pixel from the sum
if (++historyIdx >= shadowSize) {
historyIdx -= shadowSize;
}
}
}
return dst;
}
// creates the shadow mask for the original picture
// it colorize all the pixels with the shadow color according to their
// original transparency
private BufferedImage createShadowMask(final BufferedImage image) {
BufferedImage mask = new BufferedImage(image.getWidth(),
image.getHeight(),
BufferedImage.TYPE_INT_ARGB);
Graphics2D g2d = mask.createGraphics();
g2d.drawImage(image, 0, 0, null);
g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_IN,
opacity));
g2d.setColor(color);
g2d.fillRect(0, 0, image.getWidth(), image.getHeight());
g2d.dispose();
return mask;
}
// creates a blur convolve operation by generating a kernel of
// dimensions (size, size).
private ConvolveOp getLinearBlurOp(final int size) {
float[] data = new float[size * size];
float value = 1.0f / (float) (size * size);
for (int i = 0; i < data.length; i++) {
data[i] = value;
}
return new ConvolveOp(new Kernel(size, size, data));
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -