⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mv-search.c

📁 比较老的264解码器baseline实现
💻 C
📖 第 1 页 / 共 5 页
字号:
      }
    }
  }

  //===============================================
  //=====   SET MV'S AND RETURN MOTION COST   =====
  //===============================================
  for (i=0; i < (bsx>>2); i++)
  {
    for (j=0; j < (bsy>>2); j++)
    {
      all_mv[block_x+i][block_y+j][refframe][blocktype][0] = mv_x;
      all_mv[block_x+i][block_y+j][refframe][blocktype][1] = mv_y;
    }
  }
  if (img->type==BS_IMG)
  {
    for (i=0; i < (bsx>>2); i++)
    for (j=0; j < (bsy>>2); j++)
    {
      //  Backward
      all_bmv[block_x+i][block_y+j][ref][blocktype][0] = mv_x;
      all_bmv[block_x+i][block_y+j][ref][blocktype][1] = mv_y;
    }
  }
  return min_mcost;
}


/*!
 ***********************************************************************
 * \brief
 *    Motion Cost for Bidirectional modes
 ***********************************************************************
 */
int
BIDPartitionCost (int   blocktype,
                  int   block8x8,
                  int   fw_ref,
                  int   lambda_factor)
{
  static int  bx0[5][4] = {{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,2,0,0}, {0,2,0,2}};
  static int  by0[5][4] = {{0,0,0,0}, {0,0,0,0}, {0,2,0,0}, {0,0,0,0}, {0,0,2,2}};

  int   diff[16];
  int   pic_pix_x, pic_pix_y, block_x, block_y;
  int   v, h, mcost, i, j, k;
  int   mvd_bits  = 0;
  int   parttype  = (blocktype<4?blocktype:4);
  int   step_h0   = (input->blc_size[ parttype][0]>>2);
  int   step_v0   = (input->blc_size[ parttype][1]>>2);
  int   step_h    = (input->blc_size[blocktype][0]>>2);
  int   step_v    = (input->blc_size[blocktype][1]>>2);
  int   bxx, byy;                               // indexing curr_blk
  byte** imgY_original  = imgY_org;
  int    pix_y    =   img->pix_y;
  int    *****all_mv = img->all_mv;
  int   *****all_bmv = img->all_bmv;
  int   *****p_fwMV  = img->p_fwMV;
  int   *****p_bwMV  = img->p_bwMV;

  if(input->InterlaceCodingOption >= MB_CODING && mb_adaptive && img->field_mode)
  {
    pix_y     = img->field_pix_y;
    if(img->top_field)
    {
      imgY_original = imgY_org_top;
      all_mv = img->all_mv_top;
      all_bmv = img->all_bmv_top;
      p_fwMV  = img->p_fwMV_top;
      p_bwMV   = img->p_bwMV_top;
    }
    else
    {
      imgY_original = imgY_org_bot;
      all_mv = img->all_mv_bot;
      all_bmv = img->all_bmv_bot;
      p_fwMV  = img->p_fwMV_bot;
      p_bwMV   = img->p_bwMV_bot;

    }
  }

  //----- cost for motion vector bits -----
  for (v=by0[parttype][block8x8]; v<by0[parttype][block8x8]+step_v0; v+=step_v)
  for (h=bx0[parttype][block8x8]; h<bx0[parttype][block8x8]+step_h0; h+=step_h)
  {
    mvd_bits += mvbits[ all_mv [h][v][fw_ref][blocktype][0] - p_fwMV[h][v][fw_ref][blocktype][0] ];
    mvd_bits += mvbits[ all_mv [h][v][fw_ref][blocktype][1] - p_fwMV[h][v][fw_ref][blocktype][1] ];
    mvd_bits += mvbits[ all_bmv[h][v][     0][blocktype][0] - p_bwMV[h][v][     0][blocktype][0] ];
    mvd_bits += mvbits[ all_bmv[h][v][     0][blocktype][1] - p_bwMV[h][v][     0][blocktype][1] ];
  }
  mcost = WEIGHTED_COST (lambda_factor, mvd_bits);

  //----- cost of residual signal -----
  for (byy=0, v=by0[parttype][block8x8]; v<by0[parttype][block8x8]+step_v0; byy+=4, v++)
  {
    pic_pix_y = pix_y + (block_y = (v<<2));

    for (bxx=0, h=bx0[parttype][block8x8]; h<bx0[parttype][block8x8]+step_h0; bxx+=4, h++)
    {
      pic_pix_x = img->pix_x + (block_x = (h<<2));

      LumaPrediction4x4 (block_x, block_y, blocktype, blocktype, fw_ref, 0);

      for (k=j=0; j<4; j++)
      for (  i=0; i<4; i++, k++)
      {
        diff[k] = imgY_original[pic_pix_y+j][pic_pix_x+i] - img->mpr[i+block_x][j+block_y];
      }
      mcost += SATD (diff, input->hadamard);
    }
  }
  return mcost;
}





/*!
 ***********************************************************************
 * \brief
 *    Motion Cost for ABidirectional modes
 ***********************************************************************
 */
int
ABIDPartitionCost (int   blocktype,
                   int   block8x8,
                   int*  fw_ref,
                   int*  bw_ref,
                   int   lambda_factor,
                   int*  abp_type )
{
  static int  bx0[5][4] = {{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,2,0,0}, {0,2,0,2}};
  static int  by0[5][4] = {{0,0,0,0}, {0,0,0,0}, {0,2,0,0}, {0,0,0,0}, {0,0,2,2}};

  int   diff[16];
  int   pic_pix_x, pic_pix_y, block_x, block_y;
  int   v, h, mcost = INT_MAX, mcost0, i, j, k;
  int   mvd_bits  = 0;
  int   parttype  = (blocktype<4?blocktype:4);
  int   step_h0   = (input->blc_size[ parttype][0]>>2);
  int   step_v0   = (input->blc_size[ parttype][1]>>2);
  int   step_h    = (input->blc_size[blocktype][0]>>2);
  int   step_v    = (input->blc_size[blocktype][1]>>2);
  int   bxx, byy;                               // indexing curr_blk
  byte** imgY_original  = imgY_org;
  int    pix_y    =   img->pix_y;
  int    *****all_mv = img->all_mv;
  int   *****all_bmv = img->all_bmv;
  int   *****abp_all_dmv = img->abp_all_dmv;
  int   *****p_fwMV  = img->p_fwMV;
  int   *****p_bwMV  = img->p_bwMV;
  int   mv_scale;

#if 0
  int mcost1;
#endif

  if(input->InterlaceCodingOption >= MB_CODING && mb_adaptive && img->field_mode)
  {
    pix_y     = img->field_pix_y;
    if(img->top_field)
    {
      imgY_original = imgY_org_top;
      all_mv = img->all_mv_top;
      all_bmv = img->all_bmv_top;
      p_fwMV  = img->p_fwMV_top;
      p_bwMV   = img->p_bwMV_top;
      abp_all_dmv = img->abp_all_dmv_top;
    }
    else
    {
      imgY_original = imgY_org_bot;
      all_mv = img->all_mv_bot;
      all_bmv = img->all_bmv_bot;
      p_fwMV  = img->p_fwMV_bot;
      p_bwMV   = img->p_bwMV_bot;
      abp_all_dmv = img->abp_all_dmv_bot;

    }
  }


  if ( img->type==BS_IMG)
  {
    //
    //  Interpolation (1/2,1/2,0)
    //
    //----- cost for motion vector bits -----
    if ((input->InterlaceCodingOption >= MB_CODING && mb_adaptive && img->field_mode) || input->InterlaceCodingOption == FIELD_CODING) 
    {
      *fw_ref = 3;
      *bw_ref = 1;
    }
    else
    {
      *fw_ref = 1;
      *bw_ref = 0;
    }
    mvd_bits = 0;
    mv_scale = 256*((*bw_ref)+1)/((*fw_ref)+1);
    for (v=by0[parttype][block8x8]; v<by0[parttype][block8x8]+step_v0; v+=step_v)
    for (h=bx0[parttype][block8x8]; h<bx0[parttype][block8x8]+step_h0; h+=step_h)
    {
      abp_all_dmv[h][v][*bw_ref][blocktype][0] = all_bmv [h][v][*bw_ref][blocktype][0] - ((mv_scale*all_mv [h][v][*fw_ref][blocktype][0]+128)>>8);
      abp_all_dmv[h][v][*bw_ref][blocktype][1] = all_bmv [h][v][*bw_ref][blocktype][1] - ((mv_scale*all_mv [h][v][*fw_ref][blocktype][1]+128)>>8);

      mvd_bits += mvbits[ all_mv [h][v][*fw_ref][blocktype][0] - p_fwMV[h][v][*fw_ref][blocktype][0] ];
      mvd_bits += mvbits[ all_mv [h][v][*fw_ref][blocktype][1] - p_fwMV[h][v][*fw_ref][blocktype][1] ];
      mvd_bits += mvbits[ abp_all_dmv[h][v][*bw_ref][blocktype][0] ];
      mvd_bits += mvbits[ abp_all_dmv[h][v][*bw_ref][blocktype][1] ];
    }
    mcost0 = WEIGHTED_COST (lambda_factor, mvd_bits);

    //----- cost of residual signal -----
    for (byy=0, v=by0[parttype][block8x8]; v<by0[parttype][block8x8]+step_v0; byy+=4, v++)
    {
      pic_pix_y = pix_y + (block_y = (v<<2));

      for (bxx=0, h=bx0[parttype][block8x8]; h<bx0[parttype][block8x8]+step_h0; bxx+=4, h++)
      {
        pic_pix_x = img->pix_x + (block_x = (h<<2));

        LumaPrediction4x4 (block_x, block_y, blocktype, blocktype, *fw_ref, *bw_ref);

        for (k=j=0; j<4; j++)
        for (  i=0; i<4; i++, k++)
        {
          diff[k] = imgY_original[pic_pix_y+j][pic_pix_x+i] - img->mpr[i+block_x][j+block_y];
        }
        mcost0 += SATD (diff, input->hadamard);
      }

    }

    if ( img->type==BS_IMG)
    {
      *abp_type = 1;
      mcost = mcost0;
      if ((input->InterlaceCodingOption >= MB_CODING && mb_adaptive && img->field_mode) || input->InterlaceCodingOption == FIELD_CODING) 
      {
        *fw_ref = 3;
        *bw_ref = 1;
      }
      else
      {
        *fw_ref = 1;
        *bw_ref = 0;
      }
    }
  }
#if 0
  if (input->explicit_B_prediction==1 && img->type==BS_IMG)
  {
    //
    //  Extrapolation (2,-1,0)
    //  
    //----- cost for motion vector bits -----
    if ((input->InterlaceCodingOption >= MB_CODING && mb_adaptive && img->field_mode) || input->InterlaceCodingOption == FIELD_CODING) 
    {
      *fw_ref = 1;
      *bw_ref = 3;
    }
    else
    {
      *fw_ref = 0;
      *bw_ref = 1;
    }
    mvd_bits = 0;
    mv_scale = 256*((*bw_ref)+1)/((*fw_ref)+1);
    for (v=by0[parttype][block8x8]; v<by0[parttype][block8x8]+step_v0; v+=step_v)
    for (h=bx0[parttype][block8x8]; h<bx0[parttype][block8x8]+step_h0; h+=step_h)
    {
      abp_all_dmv[h][v][*bw_ref][blocktype][0] = all_bmv [h][v][*bw_ref][blocktype][0] - ((mv_scale*all_mv [h][v][*fw_ref][blocktype][0]+128)>>8);
      abp_all_dmv[h][v][*bw_ref][blocktype][1] = all_bmv [h][v][*bw_ref][blocktype][1] - ((mv_scale*all_mv [h][v][*fw_ref][blocktype][1]+128)>>8);

      mvd_bits += mvbits[ all_mv [h][v][*fw_ref][blocktype][0] - p_fwMV[h][v][*fw_ref][blocktype][0] ];
      mvd_bits += mvbits[ all_mv [h][v][*fw_ref][blocktype][1] - p_fwMV[h][v][*fw_ref][blocktype][1] ];
      mvd_bits += mvbits[ abp_all_dmv[h][v][*bw_ref][blocktype][0] ];
      mvd_bits += mvbits[ abp_all_dmv[h][v][*bw_ref][blocktype][1] ];

    }
    mcost1 = WEIGHTED_COST (lambda_factor, mvd_bits);

    //----- cost of residual signal -----
    for (byy=0, v=by0[parttype][block8x8]; v<by0[parttype][block8x8]+step_v0; byy+=4, v++)
    {
      pic_pix_y = pix_y + (block_y = (v<<2));

      for (bxx=0, h=bx0[parttype][block8x8]; h<bx0[parttype][block8x8]+step_h0; bxx+=4, h++)
      {
        pic_pix_x = img->pix_x + (block_x = (h<<2));

        LumaPrediction4x4 (block_x, block_y, blocktype, blocktype, *fw_ref, *bw_ref, 2);

        for (k=j=0; j<4; j++)
          for (  i=0; i<4; i++, k++)
          {
            diff[k] = curr_blk[byy+j][bxx+i] =
              imgY_original[pic_pix_y+j][pic_pix_x+i] - img->mpr[i+block_x][j+block_y];
          }
        mcost1 += SATD (diff, input->hadamard);
      }

    }

    if (mcost0<=mcost1)
    {
      *abp_type = 1;
      mcost = mcost0;
      if ((input->InterlaceCodingOption >= MB_CODING && mb_adaptive && img->field_mode) || input->InterlaceCodingOption == FIELD_CODING) 
      {
        *fw_ref = 3;
        *bw_ref = 1;
      }
      else
      {
        *fw_ref = 1;
        *bw_ref = 0;
      }
    }
    else
    {
      *abp_type = 2;
      mcost = mcost1;
      if ((input->InterlaceCodingOption >= MB_CODING && mb_adaptive && img->field_mode) || input->InterlaceCodingOption == FIELD_CODING) 
      {
        *fw_ref = 1;
        *bw_ref = 3;
      }
      else
      {
        *fw_ref = 0;
        *bw_ref = 1;
      }
    }
  }
#endif

  return mcost;
}


#ifdef ABIPRED
/*!
 ***********************************************************************
 * \brief
 *    Motion Cost for ABidirectional modes
 ***********************************************************************
 */
int
BBIDPartitionCost (int   blocktype,
                   int   block8x8,
                   int*  fw_ref,
                   int*  bw_ref,
                   int   lambda_factor,
                   int*  abp_type,
                   int   lambda_motion)
{
  static int  bx0[5][4] = {{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,2,0,0}, {0,2,0,2}};
  static int  by0[5][4] = {{0,0,0,0}, {0,0,0,0}, {0,2,0,0}, {0,0,0,0}, {0,0,2,2}};

  int   diff[16];
  int   pic_pix_x, pic_pix_y, block

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -