📄 svddpath.m
字号:
%SVDDPATH SVDD for different lambda/C
%
% W = SVDDPATH(A,FRACREJ,KTYPE,KPAR)
%
% Optimize the SVDD over the complete regularization path by changing C
% (or lambda). The SVDD is defined by the kernel KTYPE with parameter
% KPAR. For the definition of the kernel, see dd_kernel.m.
%
% To get the path, please have a look at svddpath_opt.m.
%
% W = SVDDPATH(A,FRACREJ,KTYPE,KPAR,UB)
%
% Finally, you can introduce upper bounds on the weights per object by
% defining the vector UB (UB_i>0).
% bound on
%See also: svdd, incsvdd, dd_kernel, svddpath_opt
% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function W = svddpath(a,fracrej,ktype,kpar,UB)
% First set up the parameters
if nargin < 5
UB = [];
end
if nargin < 4
kpar = 1;
end
if nargin < 3
ktype = 'p';
end
if nargin < 2 | isempty(fracrej), fracrej = 0.05; end
if nargin < 1 | isempty(a) % empty svdd
W = mapping(mfilename,{fracrej,ktype,kpar,UB});
W = setname(W,'Support vector dd-path');
return
end
if ~ismapping(fracrej) % training
% introduce outlier label for outlier class if it is available.
if isocset(a)
signlab = getoclab(a);
if any(signlab<0), error('No outliers here please.'); end
else
%error('SVDD needs a one-class dataset.');
% Noo, be nice, everything is target:
signlab = ones(size(a,1),1);
%a = target_class(+a);
end
% check the rejection rates
if (fracrej(1)>1)
warning('dd_tools:AllReject',...
'Fracrej > 1? I cannot reject more than all my target data!');
end
% Setup the appropriate C's
nrtar = size(a,1);
% Setup the kernel matrix
K = dd_kernel(+a,+a,ktype,kpar);
% Find the alpha's
[lambda,alf,B,O] = svddpath_opt(K,nrtar*fracrej,UB);
% get rid of this lambda:
alf = alf/lambda(end);
% and the offset:
offs = sum(sum((alf*alf').*K));
% and threshold:
thr = diag(K(B,B)) - 2*K(B,:)*alf;
thr = mean(thr);
% store the results
SV = [B; O];
W.ktype = ktype;
W.kpar = kpar;
W.a = alf(SV);
W.threshold = offs+thr;
W.sv = +a(SV,:);
W.offs = offs;
W = mapping(mfilename,'trained',W,str2mat('target','outlier'),size(a,2),2);
W = setname(W,'Support vector data description');
else %testing
W = getdata(fracrej);
m = size(a,1);
out = zeros(m,1);
% check if alpha's are OK
if isempty(W.a)
warning('dd_tools:OptimFailed','The SVDD is empty or not well defined');
end
% and here we go:
K = dd_kernel(+a,W.sv,W.ktype,W.kpar);
for i=1:m
ai = +a(i,:);
Kaa = dd_kernel(ai,ai,W.ktype,W.kpar);
out(i) = W.offs + Kaa - 2*K(i,:)*W.a;
end
newout = [out repmat(W.threshold,m,1)];
% Store the distance as output:
W = setdat(a,-newout,fracrej);
W = setfeatdom(W,{[-inf 0] [-inf 0]});
end
return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -