⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dd_eer.m

📁 data description toolbox 1.6 单类分类器工具包
💻 M
字号:
%EER Equal error rate%%    E = DD_EER(R)%    E = A*W*DD_EER%% Compute the Equal error rate for ROC-curve R, or from the roc-curve% derived from dataset A applied to (one-class) classifier W. Output E% returns two values, the FPr and the FNr. In the case the ROC curve is% sampled very well, these two values should be equal. In the case the% ROC curve is very poorly sampled, both values may be much different.% In these cases you probably want to use the average of the two, i.e.% mean(e).%% See also: dd_roc, dd_error, dd_auc% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlandsfunction e = dd_eer(a,w)if nargin==0	e = mapping(mfilename,'fixed');elseif nargin==1	if isocset(a)		a = a*dd_roc;	end	if ~isa(a,'struct')		error('I expect a roc curve structure.');	end	if ~isfield(a,'err')		error('I expect a roc curve.');	end	err = abs(a.err(:,1)-a.err(:,2));	[minerr,I] = min(err);	e = a.err(I,:);else	ismapping(w);	istrained(w);	e = feval(mfilename,a*w);endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -