📄 dd_eer.m
字号:
%EER Equal error rate%% E = DD_EER(R)% E = A*W*DD_EER%% Compute the Equal error rate for ROC-curve R, or from the roc-curve% derived from dataset A applied to (one-class) classifier W. Output E% returns two values, the FPr and the FNr. In the case the ROC curve is% sampled very well, these two values should be equal. In the case the% ROC curve is very poorly sampled, both values may be much different.% In these cases you probably want to use the average of the two, i.e.% mean(e).%% See also: dd_roc, dd_error, dd_auc% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlandsfunction e = dd_eer(a,w)if nargin==0 e = mapping(mfilename,'fixed');elseif nargin==1 if isocset(a) a = a*dd_roc; end if ~isa(a,'struct') error('I expect a roc curve structure.'); end if ~isfield(a,'err') error('I expect a roc curve.'); end err = abs(a.err(:,1)-a.err(:,2)); [minerr,I] = min(err); e = a.err(I,:);else ismapping(w); istrained(w); e = feval(mfilename,a*w);endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -