⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dd_aic.m

📁 data description toolbox 1.6 单类分类器工具包
💻 M
字号:
function e = dd_aic(w,x)%DD_AIC compute the Akaike Information Criterion for MoG%%      E = DD_AIC(W,X)%% Compute the Akaike Information Criterion of the Mixture of% Gaussians. We assume we have a trained classifier W and data X.%% Also see: dd_error, dd_roc, dd_auc% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% Note: smaller values of aic are good...% Compute the probabilityp = x*w; p = +p(:,1);% Depending on the model, the AIC is different;switch getmapping_file(w)	case 'gauss_dd'		nrparam = d + d*(d+1)/2;  %mean and cov.matrix   		case 'parzen_dd'		param = 1;   %width parameter    	case 'mog_dd'		W = getdata(w);		c = size(W.m,1);		[n,d] = size(x);		% determine what type of covariance matrices we have:		ctype = ndims(W.c);		if ((ctype==2)&(size(W.c,2)==1))			ctype = 1;		end		% the number of parameters		% for all covariance versions, the priors and the means are the same:		nrparam = c + c*d;		switch ctype		case 1  % sphere covariance matrix			nrparam = nrparam + c;		case 2  % diagonal covariance matrix				nrparam = nrparam + c*d;		case 3  % full covariance matrix			nrparam = nrparam + c*d*(d+1)/2;		otherwise			error('Type of covariance matrix not recognized')		end	otherwise		error('AIC cannot be computed for this mapping!');end% For the loglikelihood:e = -2*sum(log(p)) + 2*nrparam;%strangely this one does not seem to work!:%e = -2*sum(log(sum(p,2))) + 2*nrparam/n;return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -