📄 dkcenter_dd.m
字号:
%DKCENTER_DD Distance k-center data description.% % W = DKCENTER_DD(D,FRACREJ,K)% % Train a k-center method with K prototypes on distance dataset D.% % See also datasets, mappings, dd_roc, kcenter_dd% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlandsfunction W = dkcenter_dd(D,fracrej,K,nrtries)if nargin < 4, nrtries = 25; endif nargin < 3 | isempty(K), K = 5; endif nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(D) % empty nndd W = mapping(mfilename,{fracrej,K,nrtries}); W = setname(W,'K-Centers data description'); returnendif ~ismapping(fracrej) %training % make sure a is an OC dataset if ~isocset(D) error('I expect a one-class dataset'); end k = size(D,2); % train it: D(1:(k+1):end) = 0; % *sigh* [lab,J,dmin] = kcentres(D,K,nrtries); % obtain the threshold: % set the diagonal to inf: %D(1:(k+1):end) = inf; d = sqrt(min(D(:,J),[],2)); thr = dd_threshold(d,1-fracrej); %and save all useful data: W.J = J; W.threshold = thr; W = mapping(mfilename,'trained',W,str2mat('target','outlier'),k,2); W = setname(W,'Dist. K-Centers data description');else %testing W = getdata(fracrej); % unpack m = size(D,1); %compute: newout = [sqrt(min(D(:,W.J),[],2)) repmat(W.threshold,m,1)]; % store the distance as output: W = setdat(D,-newout,fracrej); W = setfeatdom(W,{[-inf 0] [-inf 0]});endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -