⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dkcenter_dd.m

📁 data description toolbox 1.6 单类分类器工具包
💻 M
字号:
%DKCENTER_DD Distance k-center data description.% %       W = DKCENTER_DD(D,FRACREJ,K)% % Train a k-center method with K prototypes on distance dataset D.% % See also datasets, mappings, dd_roc, kcenter_dd% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlandsfunction W = dkcenter_dd(D,fracrej,K,nrtries)if nargin < 4, nrtries = 25; endif nargin < 3 | isempty(K), K = 5; endif nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(D) % empty nndd	W = mapping(mfilename,{fracrej,K,nrtries});	W = setname(W,'K-Centers data description');	returnendif ~ismapping(fracrej)           %training	% make sure a is an OC dataset	if ~isocset(D)		error('I expect a one-class dataset');	end	k = size(D,2);	% train it:	D(1:(k+1):end) = 0;  % *sigh* 	[lab,J,dmin] = kcentres(D,K,nrtries);	% obtain the threshold:	% set the diagonal to inf:	%D(1:(k+1):end) = inf;	d = sqrt(min(D(:,J),[],2));	thr = dd_threshold(d,1-fracrej);	%and save all useful data:	W.J = J;	W.threshold = thr;	W = mapping(mfilename,'trained',W,str2mat('target','outlier'),k,2);	W = setname(W,'Dist. K-Centers data description');else                               %testing	W = getdata(fracrej);  % unpack	m = size(D,1);	%compute:	newout = [sqrt(min(D(:,W.J),[],2)) repmat(W.threshold,m,1)];	% store the distance as output:	W = setdat(D,-newout,fracrej);	W = setfeatdom(W,{[-inf 0] [-inf 0]});endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -