⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wstartup.m

📁 data description toolbox 1.6 单类分类器工具包
💻 M
字号:
function [W,startc] = Wstartup(x, y, C, kernel, kpar)% W = Wstartup(x, y, C, kernel, kpar)%% Start the incremental Support vector data description. It puts the% data in a global matlab matrix, initializes all sets and gives the% first basic solution, using the minimum number of objects for which% the constraints can be satisfied. All variables are stored in a% structure, containing the following fields:%    x, y%    kernel,%    C, tol,%    alf, b, grad, R,%    setR, setS, setE, Kr, Ks, Ke%% Unfortunately, there is still some ugly code for generating% intermediate plots. Maybe this will be removed later.%% See also: incsvdd, inckernel, Wadd, svdd% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% initializeglobal X_incremental;      % hm, probably the best??X_incremental = [];W.x = 'global';             % the data with labelsn = size(x,1);W.y = y;W.kernel = kernel;   % the kernel with the parametersW.kpar = kpar;W.C = C;W.tol = 1e-12;       % tolerance to say alf = 0;%W.alf = zeros(n,1);  % weightsW.alf = zeros(0,1);W.b = 0;W.grad = [];         % the gradients of seen objectsW.R = [];W.setR = [];         % the set indicesW.setS = 0;W.setE = [];W.Kr = [];           % the kernel matricesW.Ks = [];W.Ke = [];% ok, a bit of trickery, to set up variables such that constraints are% fullfilled:if W.C>=1  % assume all labels are +1, and C>1  (DXD)  X_incremental = x(1,:);  W.y = 1;  W.setS = 1;  W.setE = [];          % error set  W.Ke = [];            % kernel matrix of the error objects(ExS)  K = feval(W.kernel,W.kpar,1,1);  W.Ks = [0 W.y(1); W.y(1) 2*K];  W.alf(1) = 1;  W.b = -W.Ks(2,2)/2;  % make sure gradient of object 1 = 0  W.grad = 0;  W.R = inv(W.Ks);  start_c = 2;else  % now we are more brave, and try C<1  N = floor(1/W.C); % we need at least N+1 objects to satisfy sum_i \ai=1  X_incremental = x(1:(N+1),:);  W.y = y(1:(N+1));  % the weights:  set0 = (1:(N+1))';  W.alf(set0,1) = [repmat(W.C,N,1); 1-N*W.C];  % the gradient:  K = feval(W.kernel,W.kpar,set0,set0);  W.grad = 2*K*W.alf(set0) - diag(K);  % set b such that for the bounded objects, the gradient is 0 or  % smaller:  W.b = -max(W.grad(1:(end-1))) - W.tol;  %DXD: OOPS  %W.b = -max(W.grad);  % update the gradient therefore:  W.grad = W.grad + W.b.*W.y(set0);  % set up the sets:  W.setS = [];  W.setE = (1:N)';  W.setR = [];  % the kernel caches:  W.Ks = 0;  W.Ke = [];  W.Kr = [];  % update R:  W.R = inf;  c = N+1;  W = Wadd(W,[],[],1);  start_c = N+2;end%alf% We added upto start_c objects. Now we have to add the rest:for c=start_c:n	if ((n>1000) & (mod(c,10)==0)), fprintf('%d/%d\t',c,n); end	W = Wadd(W,x(c,:),y(c));endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -