⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 parzen_dd.m

📁 data description toolbox 1.6 单类分类器工具包
💻 M
字号:
%PARZEN_DD Parzen data description.% %       W = parzen_dd(A,fracrej)% % Fit a Parzen density on dataset A. The threshold is put such that% fracrej of the target objects is rejected.% %       W = parzen_dd(A,fracrej,h)% % If the width parameter is known, it can be given as third parameter,% otherwise it is optimized using parzenml.% % See also datasets, mappings, dd_roc, nparzen_dd% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands  function W = parzen_dd(a,fracrej,h)if nargin < 3, h = []; endif nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(a) 	W = mapping(mfilename,{fracrej,h});	W = setname(W,'Parzen');	returnendif ~ismapping(fracrej)           %training	% Make sure a is an OC dataset:	a = target_class(a);	k = size(a,2);	% Train it:	if (nargin<3) | (isempty(h))		h = parzenml(a);	end	%DXD parzendc expects at least 2 classes nowadays, that's ok, we	%now just have to do it ourselves:	%w = parzendc(a,h);	w = mapping('parzen_map','trained',{a,h}, getlablist(a),k,1);	% Obtain the threshold:	d = +(a*w);	thr = dd_threshold(d,fracrej);	%and save all useful data:	W.w = w;	%(Strictly speaking h is already stored in w, but for inspection	%reasons I still want to have it here:)	W.h = h;	W.threshold = thr;	W = mapping(mfilename,'trained',W,str2mat('target','outlier'),k,2);	W = setname(W,'Parzen');else                               %testing	W = getdata(fracrej);  % unpack	m = size(a,1);	%compute:	out = +(a*W.w);	newout = [out, repmat(W.threshold,m,1)];	% Store the density:	W = setdat(a,newout,fracrej);	W = setfeatdom(W,{[0 inf] [0 inf]});endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -