⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lpball_dd.m

📁 data description toolbox 1.6 单类分类器工具包
💻 M
字号:
%LPBALL_DD L_p ball description%%    W = LPBALL_DD(X,FRACREJ,BTYPE,P)%% Optimize a L_p ball around dataset X, rejecting FRACREJ fraction of% the data. The type of ball can be:%   BTYPE :%      w       optimize the weights per feature%      center  optimize the center%      p       optimize the center and p%% See also ball_dd, svdd, myproxm, lpball_distmean% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlandsfunction W = lpball_dd(a,fracrej,btype,p)% Take care of empty/not-defined arguments:if nargin < 4 p = 2; endif nargin < 3 btype = 'p'; endif nargin < 2 fracrej = 0.05; endif nargin < 1 | isempty(a) 	% When no inputs are given, we are expected to return an empty	% mapping:	W = mapping(mfilename,{fracrej,btype,p});	% And give a suitable name:	W = setname(W,'LpBall one-class classifier');	returnendif ~ismapping(fracrej)           %training	a = target_class(a);     % only use the target class	[m,k] = size(a);	% default values:	W.p = p;	W.w = ones(1,k);	% train it:	switch btype	case 'w'		if size(a,1)>1  % I have more than 1 datapoint (gives problems otherwise)			% check if all the features do something:			x = +a;			newk = k;			J = (var(x)<=1e-9);			I = find(J);			if ~isempty(I)				message(5,'Removed the features with zero variance!');				x(:,I) = [];				newk = k - length(I);			end			% now we need the 'inverse' of J:			I = find(~J);			% something like a L_p distance			meanx = mean(x);			x = abs(x - repmat(meanx,m,1)).^p;			% setup the LP:			f = [zeros(1,newk) 1]';			A = [    x    -ones(m,1)];			b = zeros(m,1);			Aeq = [ones(1,newk) 0];			beq = 1;			lb = zeros(newk+1,1);			ub = repmat(inf,newk+1,1);			% optimize it:			if (exist('glpkmex')>0)				message(5,'Using glpk optimizer.\n');				ctype = [repmat('S',size(Aeq,1),1);							repmat('U',size(A,1),1)];				vartype = repmat('C',size(f,1),1);				[w,fmin] = glpkmex(1,f,[Aeq;A],[beq;b],ctype,lb,ub,vartype);			else				w = linprog(f,A,b,Aeq,beq,lb,ub);			end			% use the k features and make a row vector			W.thr = w(newk+1);			w = w(1:newk);			W.w = zeros(1,k);			W.w(I) = w(:)';			W.mn = zeros(1,k);			W.mn(I) = meanx;		else % only one object in the training set			W.mn = +a(1,:);			W.thr = 0;		end	case {'center' 'c'}  % optimization of center, given p and w		opts = optimset('Display','off','GradObj','on','Hessian','on','Diagnostics','off');		W.mn = fminunc('lpball_dist',mean(+a,1),opts,+a,p,fracrej);	case 'p'              % optimization of both the center and p		par = [log(2) mean(+a,1)];  % initialization of p, center and slacks		opts = optimset;		opts.MaxFunEvals = 1e4;		opts.TolFun = 0.1;  %???		% go:		alf = fminsearch('lpball_vol',par,opts,+a,fracrej);		% store the results:		W.p = exp(alf(1));		W.mn = alf(2:k+1);	otherwise		error('This ball-type is not known');	end	% get the threshold:	diff = lpdist(+a,W.mn,W.p,W.w);	W.threshold = dd_threshold(diff,1-fracrej);	%and save all useful data in a structure:	W = mapping(mfilename,'trained',W,str2mat('target','outlier'),k,2);	W = setname(W,'LpBall one-class classifier');else %testing	% Unpack the mapping and dataset:	W = getdata(fracrej);	[m,k] = size(a); 	% Find the distance:	out = lpdist(+a,W.mn,W.p,W.w);	newout = [out repmat(W.threshold,m,1)];	% Fill in the data, keeping all other fields in the dataset intact:	W = setdat(a,-newout,fracrej);	W = setfeatdom(W,{[-inf 0] [-inf 0]});endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -