⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mcd_gauss_dd.m

📁 data description toolbox 1.6 单类分类器工具包
💻 M
字号:
%MCD_GAUSS_DD Minimum Covariance Determinant Robust Gaussian data description.% %       W = MCD_GAUSS_DD(A,FRACREJ)% % Fit a Minimum-Covariance-Determinant Gaussian density on dataset A. The% algorithm is taken from :%%  Rousseeuw, P.J. and Van Driessen, Katrien, "A fast algorithm for%  the minimum covariance determinant estimator", 15 Dec. 1998% % See also: dd_roc, fastmcd, gauss_dd, rob_gauss_dd% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands  function [W,out] = mcd_gauss_dd(x,fracrej)if nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(x) 	W = mapping(mfilename,{fracrej});	W = setname(W,'Minimum Covariance Determinant Gaussian');	returnendif isa(fracrej,'double')           %training	x = +target_class(x);     % only use the target class	[n,dim] = size(x);	% call the function:	options.alpha = 1-fracrej;	options.cor = 1; % a robust corr. matrix will be returned...	options.lts = []; % display nothing!   warning off MATLAB:eigs:NoEigsConverged;	res = fastmcd(x,options);   warning on MATLAB:eigs:NoEigsConverged;	% invert the covariance matrix:	sinv = inv(res.cov);	% get the distances on the training set:	X = +x - repmat(res.center,n,1);	d = sum((X*sinv).*X,2);		% Obtain the threshold:	thr = dd_threshold(d,1-fracrej);	%and save all useful data:	W.m = res.center;	W.sinv = sinv;	W.threshold = thr;	%W = mapping(mfilename,'trained',W,str2mat('target','outlier'),dim,2);	% actually, we can just call 'gauss_dd' now!	W = mapping('gauss_dd','trained',W,str2mat('target','outlier'),dim,2);	W = setname(W,'Minimum Covariance Determinant Gaussian');else	error('Evaluation of mcd_gauss_dd is treated by gauss_dd!');endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -