⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dd_normc.m

📁 data description toolbox 1.6 单类分类器工具包
💻 M
字号:
%DD_NORMC Normalize the output of a oc-classifier% %       B = DD_NORMC(A)%       B = A*W*DD_NORMC%       W = DD_NORMC% % Normalize the mapped dataset A to standard 'posterior probability'% estimates (or something which looks similar to that). It basically% means that all rows sum to 1. For the output of distance-based% one-class classifiers (indicated by the definition of the% featdom-field in the dataset), it also means that the sign is flipped.% % See also datasets, mappings, myproxm% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands  function a = dd_normc(a)if nargin < 1 | isempty(a) 	a = mapping(mfilename,'fixed');	a = setname(a,'Output normalization');	returnend[n,p] = size(a);% We have a normal double matrix, just normalize that the sum of each% row is 1. This can go wrong when you supply a vector of course:-)sm = sum(a,2);a = a./repmat(sm,1,p);% Check if we can at least expect a one-class classifier:if isdataset(a)	featdom = getfeatdom(a);	if ~isempty(featdom{1}) & ~isempty(featdom{2})		% we are prob. dealing with a one-class output...:		if (featdom{1}==[-inf 0]) & (featdom{2}==[-inf 0])			% we are dealing with a distance-based one-class classif.			if (p ~= 2)				error('I am expecting a 2-class output (target and outlier)');			end			% change the sign			a = 1-a;		end	endendreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -