📄 contents.m
字号:
% Data Description Toolbox% Version 1.6.1 14-Aug-2007%%Dataset construction%--------------------%isocset true if dataset is one-class dataset%gendatoc generate a one-class dataset from two data matrices%oc_set change normal classif. problem to one-class problem%target_class extracts the target class from an one-class dataset%make_outliers create outlier data in a box around target class%gendatgrid create a grid dataset around a 2D dataset%gendatout create outlier data in a hypersphere around the% target data%gendatoutg create outlier data normally distributed around the% target data%gendatouts create outlier data in the data PCA subspace in a% hypersphere around the target data%dd_crossval cross-validation dataset creation%dd_label put the classification labels in the same dataset%%Data preprocessing%------------------%myproxm replacement for proxm.m%kwhiten rescale data to unit variance in kernel space%gower compute the Gower similarities%%One-class classifiers%---------------------%random_dd description which randomly assigns labels%stump_dd threshold the first feature%gauss_dd data description using normal density%rob_gauss_dd robustified gaussian distribution%mcd_gauss_dd Minimum Covariance Determinant gaussian%mog_dd mixture of Gaussians data description%mog_extend extend a Mixture of Gaussians data description%parzen_dd Parzen density data description%nparzen_dd Naive Parzen density data description%%autoenc_dd auto-encoder neural network data description%kcenter_dd k-center data description%kmeans_dd k-means data description%pca_dd principal component data description%som_dd Self-Organizing Map data description%mst_dd minimum spanning tree data description%%nndd nearest neighbor based data description%knndd K-nearest neighbor data description%ball_dd L_p-ball data description%lpball_dd extended L_p-ball data description%svdd Support vector data description%incsvdd Incremental Support vector data description%ksvdd SVDD on general kernel matrices%lpdd linear programming data description%mpm_dd minimax probability machine data description%%dkcenter_dd distance k-center data description%dnndd distance nearest neighbor based data description%dknndd distance K-nearest neighbor data description%dlpdd distance-linear programming data description%%isocc true if classifier is one-class classifier%%AUC optimizers%--------------%rankboostc Rank-boosting algorithm%auclpm AUC linear programming mapping%%Classifier postprocessing/optimization/combining.%--------------------------------------%consistent_occ optimize the hyperparameter using consistency%optim_auc optimize the hyperparameter by maximizing AUC%dd_normc normalize oc-classifier output%multic construct a multi-class classifier from OCC's%%Error computation.%-----------------%dd_error false positive and negative fraction of classifier%dd_f1 F1 score computation%dd_eer equal error rate%dd_roc computation of the Receiver-Operating Characterisic curve %dd_auc error under the ROC curve%dd_costc cost curve%dd_delta_aic AIC error for density estimators%dd_fp compute false positives for given false negative% fraction%simpleroc basic ROC curve computation%dd_setfn set the threshold for a false negative rate%%Plot functions.%--------------%plotroc plot an ROC curve%plotcostc plot the cost curve%plotg plot a 2D grid of function values%plotw plot a 2D real-valued output of classifier w%askerplot plot the FP and FN fraction wrt the thresholds%plot_mst plot the minimum spanning tree%%Support functions.%-----------------%istarget true if an object is target%find_target gives the indices of target and outlier objs from a dataset%getoclab returns numeric labels (+1/-1)%dist2dens map distance to posterior probabilities%dd_threshold give percentiles for a sample%randsph create outlier data uniformly in a unit hypersphere%makegriddat auxiliary function for constructing grid data%relabel relabel a dataset%dd_kernel general kernel definitions%center center the kernel matrix in kernel space%gausspdf multi-variate Gaussian prob.dens.function%mahaldist Mahalanobis distance%sqeucldistm square Euclidean distance%mog_init initialize a Mixture of Gaussians%mog_P probability density of Mixture of Gaussians%mog_update update a MoG using EM%mogEMupdate EM procedure to optimize Mixture of Gaussians%mogEMextend smartly extend a MoG and apply EM%mykmeans own implementation of the k-means clustering algorithm%getfeattype find the nominal and continuous features%knn_optk optimization of k for the knndd using leave-one-out%volsphere compute the volume of a hypersphere%scale_range compute a reasonable range of scales for a dataset%nndist_range compute the average nearest neighbor distance%inckernel kernel definitions for the incsvdd%Wstartup startup function incsvdd%Wadd/Wremove add/remove one object to an incsvdd%Wstore store the structure in an incsvdd%plotroc_update support function for plotroc%roc_hull convex hull over a ROC curve%lpball_dist lp-distance to a center%lpball_vol volume of a lpball%lpdist fast lp-distance between two datasets%%Examples%--------%dd_ex1 show performance of nndd and svdd%dd_ex2 show the performances of a list of classifiers%dd_ex3 shows the use of the svdd and ksvdd%dd_ex4 optimizes a hyperparameter using consistent_occ%dd_ex5 shows the construction of lpdd from dlpdd%dd_ex6 shows the different Mixture of Gaussians classifiers%dd_ex7 shows the combination of one-class classifiers%dd_ex8 shows the interactive adjustment of the operating point%dd_ex9 shows the use of dd_crossval%dd_ex10 shows the use of the incremental SVDD%dd_ex11 the construction of a multi-class classifier using OCCs%% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -