📄 som_dd.m
字号:
%SOM_DD Self-Organizing Map data description
%
% W = SOM_DD(X,FRACREJ,K)
%
% Train a 2D SOM on dataset X. In K the size of the map is defined. The
% map can maximally be 2D. When K contains just a single value, it is
% assumed that a 1D map should be trained.
%
% For further features of SOM_DD, see som.m (the same parameters
% NRRUNS, ETA and H can be added).
%
% Default: K=[5 5]
%
% See also: pca_dd, kmeans_dd, som
% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function W = som_dd(x,fracrej,k,nrruns,eta,h)
if nargin <6 | isempty(h)
h = [0.6 0.2 0.01];
end
if nargin <5 | isempty(eta)
eta = [0.5 0.3 0.1];
end
if nargin <4 | isempty(nrruns)
nrruns = [20 40 40];
end
if nargin < 3 k = [5 5]; end
if nargin < 2 fracrej = 0.05; end
if nargin < 1 | isempty(x)
W = mapping(mfilename,{fracrej,k,nrruns,eta,h});
W = setname(W,'Self-organising Map data description');
return
end
if ~ismapping(fracrej) %training
x = +target_class(x); % only use the target class
[nrx,dim] = size(x);
% Now, all the work is being done by som.m:
w = som(x,k,nrruns,eta,h);
w = +w; % can you still follow it?
w = w.w;
% Now map the training data:
mD = min(sqeucldistm(x,w),[],2);
thresh = dd_threshold(mD,1-fracrej);
% And save all useful data:
W.threshold = thresh; % a threshold should always be defined
W.k = k; %(only for plotting...)
W.w = w;
W = mapping(mfilename,'trained',W,str2mat('target','outlier'),dim,2);
W = setname(W,'Self-organising Map data description');
else
W = getdata(fracrej); %unpack
m = size(x,1);
% compute the distance to the nearest neuron in the map:
mD = min(sqeucldistm(+x,W.w),[],2);
newout = [mD repmat(W.threshold,m,1)];
% Store the distance as output:
W = setdat(x,-newout,fracrej);
W = setfeatdom(W,{[-inf 0] [-inf 0]});
end
return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -