⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dd_delta_aic.m

📁 data description toolbox 1.6 单类分类器工具包
💻 M
字号:
function e = dd_delta_aic(w,x)%DD_DELTA_AIC compute the Akaike Information Criterion for MoG%% e = dd_delta_aic(w,x)%% Compute the (difference in) Akaike Information Criterion of a% trained model w on data x. In this version we compute:%%     e = -2 LL + 2 #param%% where LL is the loglikelihood on the set x, and *not* the deviance% between two models. In order to make it true AIC, you have to% subtract the LL for the saturated model.%% also see dd_error, dd_roc, dd_auc% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands[W,labl,map,d] = mapping(w);if ~is_occ(w)	error('DD_AIC: this AIC is only defined for one-class classifiers');endp = x*w; p = +p(:,1);switch mapcase 'gauss_dd'	 nrparam = d + d*(d+1)/2;  %mean and cov.matrix case 'mog_dd'	 c = size(W.m,1);	 [n,d] = size(x);	 covtype = ndims(W.c);	 if ((covtype==2)&(size(W.c,2)==1)), covtype = 1; end		 % the number of parameters		 % for all covariance versions, the priors and the means are the same:		 nrparam = c + c*d;		 switch covtype		 case 1			 nrparam = nrparam + c;		case 2			nrparam = nrparam + c*d;		case 3			nrparam = nrparam + c*d*(d+1)/2;		otherwise			error('Type of covariance matrix not recognized')	 end otherwise	 error('AIC cannot be computed for this mapping!');end% For the loglikelihood:e = -2*sum(log(p)) + 2*nrparam;%strangely this one does not seem to work!:%e = -2*sum(log(sum(p,2))) + 2*nrparam/n;return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -