📄 intr.c
字号:
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
//
// Use of this source code is subject to the terms of the Microsoft end-user
// license agreement (EULA) under which you licensed this SOFTWARE PRODUCT.
// If you did not accept the terms of the EULA, you are not authorized to use
// this source code. For a copy of the EULA, please see the LICENSE.RTF on your
// install media.
//
//------------------------------------------------------------------------------
//
// File: intr.c
//
// This file implement major part of interrupt module for Au1 SoC.
//
#include <windows.h>
#include <ceddk.h>
#include <nkintr.h>
#include <oal.h>
#include <oal_intr_mips.h>
#include <oal_info_mips.h>
#include <au1.h>
//------------------------------------------------------------------------------
//
// Globals: g_pIC0Regs/g_pIC1Regs
//
// The global variables are storing virual address for IC0 and IC1 units
// for use in interrupt handling to avoid possible time consumig call to
// OALPAtoVA function.
//
static AU1_IC_REGS *g_pIC0Regs;
static AU1_IC_REGS *g_pIC1Regs;
//------------------------------------------------------------------------------
//
// Function: OALIntrInit
//
// This function initialize Vr4131 interrupt hardware.
//
BOOL OALIntrInit()
{
BOOL rc = FALSE;
OAL_MIPS_PROCESSOR_ID id;
OALMSG(OAL_INTR&&OAL_FUNC, (L"+OALInterruptInit\r\n"));
// Initialize interrupt mapping
OALIntrMapInit();
// Get and save uncached virtual addresses for IC0 and IC1
g_pIC0Regs = OALPAtoUA(AU1_IC0_REGS_PA);
g_pIC1Regs = OALPAtoUA(AU1_IC1_REGS_PA);
// First IC0
OUTREG32(&g_pIC0Regs->CFG0CLR, 0xFFFFFFFF); // All disabled
OUTREG32(&g_pIC0Regs->CFG1CLR, 0xFFFFFFFF);
OUTREG32(&g_pIC0Regs->CFG2CLR, 0xFFFFFFFF);
OUTREG32(&g_pIC0Regs->SRCSET, 0xFFFFFFFF); // All hardware
OUTREG32(&g_pIC0Regs->ASSIGNSET, 0xFFFFFFFF); // All request 0
OUTREG32(&g_pIC0Regs->WAKECLR, 0xFFFFFFFF); // No wakeup
OUTREG32(&g_pIC0Regs->MASKCLR, 0xFFFFFFFF);
OUTREG32(&g_pIC0Regs->RISINGCLR, 0xFFFFFFFF);
OUTREG32(&g_pIC0Regs->FALLINGCLR, 0xFFFFFFFF);
// Then IC1
OUTREG32(&g_pIC1Regs->CFG0CLR, 0xFFFFFFFF); // All disabled
OUTREG32(&g_pIC1Regs->CFG1CLR, 0xFFFFFFFF);
OUTREG32(&g_pIC1Regs->CFG2CLR, 0xFFFFFFFF);
OUTREG32(&g_pIC1Regs->SRCSET, 0xFFFFFFFF); // All hardware
OUTREG32(&g_pIC1Regs->ASSIGNSET, 0xFFFFFFFF); // All request 0
OUTREG32(&g_pIC1Regs->WAKECLR, 0xFFFFFFFF); // No wakeup
OUTREG32(&g_pIC1Regs->MASKCLR, 0xFFFFFFFF);
OUTREG32(&g_pIC1Regs->RISINGCLR, 0xFFFFFFFF);
OUTREG32(&g_pIC1Regs->FALLINGCLR, 0xFFFFFFFF);
// Get chip identification
id.value = OALMIPSGetProcessorId();
// If we know chip set configuration bit
if (id.companyId == OAL_MIPS_COMP_ID_AMD) {
switch (id.option) {
case AU1_SOC_ID_AU1000:
OUTREG32(&g_pIC0Regs->CFG0SET, AU1000_IC_CFG0);
OUTREG32(&g_pIC0Regs->CFG1SET, AU1000_IC_CFG1);
OUTREG32(&g_pIC0Regs->CFG2SET, AU1000_IC_CFG2);
break;
case AU1_SOC_ID_AU1100:
OUTREG32(&g_pIC0Regs->CFG0SET, AU1100_IC_CFG0);
OUTREG32(&g_pIC0Regs->CFG1SET, AU1100_IC_CFG1);
OUTREG32(&g_pIC0Regs->CFG2SET, AU1100_IC_CFG2);
break;
case AU1_SOC_ID_AU1500:
OUTREG32(&g_pIC0Regs->CFG0SET, AU1500_IC_CFG0);
OUTREG32(&g_pIC0Regs->CFG1SET, AU1500_IC_CFG1);
OUTREG32(&g_pIC0Regs->CFG2SET, AU1500_IC_CFG2);
break;
}
}
// Hook interrupts 0 to 2
if (!HookInterrupt(0, OALIntr0Handler)) {
OALMSG(OAL_ERROR, (
L"ERROR: OALIntrInit: HookInterrupt for MIPS interrupt 0 failed\r\n"
));
goto cleanUp;
}
if (!HookInterrupt(1, OALIntr1Handler)) {
OALMSG(OAL_ERROR, (
L"ERROR: OALIntrInit: HookInterrupt for MIPS interrupt 1 failed\r\n"
));
goto cleanUp;
}
if (!HookInterrupt(2, OALIntr2Handler)) {
OALMSG(OAL_ERROR, (
L"ERROR: OALIntrInit: HookInterrupt for MIPS interrupt 2 failed\r\n"
));
goto cleanUp;
}
if (!HookInterrupt(3, OALIntr3Handler)) {
OALMSG(OAL_ERROR, (
L"ERROR: OALIntrInit: HookInterrupt for MIPS interrupt 3 failed\r\n"
));
goto cleanUp;
}
#ifdef OAL_BSP_CALLBACKS
// Give BSP change to initialize subordinate controller
rc = BSPIntrInit();
#else
rc = TRUE;
#endif
cleanUp:
OALMSG(OAL_INTR&&OAL_FUNC, (L"-OALInterruptInit(rc = %d)\r\n", rc));
return rc;
}
//------------------------------------------------------------------------------
//
// Function: OALIntrRequestIrq
//
// This function returns IRQ for CPU/SoC devices based on their
// physical address.
//
BOOL OALIntrRequestIrqs(DEVICE_LOCATION *pDevLoc, UINT32 *pCount, UINT32 *pIrq)
{
BOOL rc = FALSE;
OALMSG(OAL_INTR&&OAL_FUNC, (
L"+OALIntrRequestIrqs(0x%08x->%d/%d/0x%08x/%d, 0x%08x, 0x%08x)\r\n",
pDevLoc, pDevLoc->IfcType, pDevLoc->BusNumber, pDevLoc->LogicalLoc,
pDevLoc->Pin, pCount, pIrq
));
// This shouldn't happen
if (*pCount < 1) goto cleanUp;
if (pDevLoc->IfcType == Internal) {
switch (pDevLoc->LogicalLoc) {
case AU1_MACA0_REGS_PA:
case AU1_MACB0_REGS_PA:
pIrq[0] = IRQ_MAC0;
*pCount = 1;
rc = TRUE;
break;
case AU1_MACA1_REGS_PA:
case AU1_MACB1_REGS_PA:
pIrq[0] = IRQ_MAC1;
*pCount = 1;
rc = TRUE;
break;
case AU1_USBD_REGS_PA:
pIrq[0] = IRQ_USBD;
*pCount = 1;
rc = TRUE;
break;
}
}
#ifdef OAL_BSP_CALLBACKS
if (!rc) rc = BSPIntrRequestIrqs(pDevLoc, pCount, pIrq);
#endif
cleanUp:
OALMSG(OAL_INTR&&OAL_FUNC, (L"-OALIntrRequestIrqs(rc = %d)\r\n", rc));
return rc;
}
//------------------------------------------------------------------------------
//
// Function: OALIntrEnableIrqs
//
BOOL OALIntrEnableIrqs(UINT32 count, const UINT32 *pIrqs)
{
BOOL rc = TRUE;
UINT32 irq, i;
OALMSG(OAL_INTR&&OAL_VERBOSE, (
L"+OALntrEnableIrqs(%d, 0x%08x)\r\n", count, pIrqs
));
for (i = 0; i < count; i++) {
#ifndef OAL_BSP_CALLBACKS
irq = pIrqs[i];
#else
// Give BSP chance to enable irq on subordinate interrupt controller
irq = BSPIntrEnableIrq(pIrqs[i]);
#endif
if (irq == OAL_INTR_IRQ_UNDEFINED) continue;
if (irq < 32) {
OUTREG32(&g_pIC0Regs->WAKESET, 1 << irq);
OUTREG32(&g_pIC0Regs->MASKSET, 1 << irq);
} else if (irq < 64) {
OUTREG32(&g_pIC1Regs->WAKESET, 1 << (irq - 32));
OUTREG32(&g_pIC1Regs->MASKSET, 1 << (irq - 32));
} else {
rc = FALSE;
}
}
OALMSG(OAL_INTR&&OAL_VERBOSE, (L"-OALIntrEnableIrqs(rc = %d)\r\n", rc));
return rc;
}
//------------------------------------------------------------------------------
//
// Function: OALIntrDisableIrqs
//
VOID OALIntrDisableIrqs(UINT32 count, const UINT32 *pIrqs)
{
UINT32 irq, i;
OALMSG(OAL_INTR&&OAL_FUNC, (
L"+OALIntrDisableIrqs(%d, 0x%08x)\r\n", count, pIrqs
));
for (i = 0; i < count; i++) {
#ifndef OAL_BSP_CALLBACKS
irq = pIrqs[i];
#else
// Give BSP chance to disable irq on subordinate interrupt controller
irq = BSPIntrDisableIrq(pIrqs[i]);
#endif
if (irq < 32) {
OUTREG32(&g_pIC0Regs->MASKCLR, 1 << irq);
} else if (irq < 64) {
OUTREG32(&g_pIC1Regs->MASKCLR, 1 << (irq - 32));
}
}
OALMSG(OAL_INTR&&OAL_FUNC, (L"-OALIntrDisableIrqs\r\n"));
}
//------------------------------------------------------------------------------
//
// Function: OALIntrDoneIrqs
//
VOID OALIntrDoneIrqs(UINT32 count, const UINT32 *pIrqs)
{
UINT32 irq, i;
OALMSG(OAL_INTR&&OAL_VERBOSE, (
L"+OALIntrDoneIrqs(%d, 0x%08x)\r\n", count, pIrqs
));
for (i = 0; i < count; i++) {
#ifndef OAL_BSP_CALLBACKS
irq = pIrqs[i];
#else
// Give BSP chance to finish irq on subordinate interrupt controller
irq = BSPIntrDoneIrq(pIrqs[i]);
#endif
if (irq < 32) {
OUTREG32(&g_pIC0Regs->MASKSET, 1 << irq);
} else if (irq < 64) {
OUTREG32(&g_pIC1Regs->MASKSET, 1 << (irq - 32));
}
}
OALMSG(OAL_INTR&&OAL_VERBOSE, (L"-OALIntrDoneIrqs\r\n"));
}
//------------------------------------------------------------------------------
//
// Function: OALIntr0Handler
//
// This is interrupt handler implementation for MIPS interrupt 0 on Au1.
//
UINT32 OALIntr0Handler()
{
UINT32 irq = OAL_INTR_IRQ_UNDEFINED;
UINT32 sysIntr = SYSINTR_NOP;
UINT32 status, mask = 0;
#ifdef OAL_ILTIMING
if (g_oalILT.active) g_oalILT.interrupts++;
#endif
// Get pending interrupt
if ((status = INREG32(&g_pIC0Regs->REQ0INT)) != 0) {
for (mask = 1, irq = 0; mask != 0; mask <<= 1, irq++) {
if ((status & mask) != 0) break;
}
// Disable it and clear edges
OUTREG32(&g_pIC0Regs->MASKCLR, mask);
OUTREG32(&g_pIC0Regs->RISINGCLR, mask);
OUTREG32(&g_pIC0Regs->FALLINGCLR, mask);
}
#ifdef OAL_BSP_CALLBACKS
// Give BSP chance to translate IRQ -- if there is subordinate
// interrupt controller in BSP it give chance to decode its status
// and change IRQ
irq = BSPIntrActiveIrq(irq);
#endif
// If there isn't valid IRQ leave
if (irq == OAL_INTR_IRQ_UNDEFINED) goto cleanUp;
// First find if IRQ is claimed by chain
sysIntr = NKCallIntChain((UCHAR)irq);
if (sysIntr == SYSINTR_CHAIN || !NKIsSysIntrValid(sysIntr)) {
// IRQ wasn't claimed or SYSINTR isn't valid, use static mapping
sysIntr = OALIntrTranslateIrq(irq);
}
// unmask interrupts in case it's NOP or invalid
if (SYSINTR_NOP == sysIntr) {
#ifdef OAL_BSP_CALLBACKS
// Give BSP chance to translate IRQ -- if there is subordinate
// interrupt controller in BSP it give chance to decode its status
// and change IRQ
BSPIntrEnableIrq (irq);
#endif
if (mask) {
OUTREG32(&g_pIC0Regs->MASKSET, mask);
}
}
cleanUp:
return sysIntr;
}
//------------------------------------------------------------------------------
//
// Function: OALIntr1Handler
//
// This is interrupt handler implementation for MIPS interrupt 1 on Au1.
//
UINT32 OALIntr1Handler()
{
UINT32 irq = OAL_INTR_IRQ_UNDEFINED;
UINT32 sysIntr = SYSINTR_NOP;
UINT32 status, mask = 0;
#ifdef OAL_ILTIMING
if (g_oalILT.active) g_oalILT.interrupts++;
#endif
// Get pending interrupt
if ((status = INREG32(&g_pIC0Regs->REQ1INT)) != 0) {
for (mask = 1, irq = 0; mask != 0; mask <<= 1, irq++) {
if ((status & mask) != 0) break;
}
// Disable it and clear edges
OUTREG32(&g_pIC0Regs->MASKCLR, mask);
OUTREG32(&g_pIC0Regs->RISINGCLR, mask);
OUTREG32(&g_pIC0Regs->FALLINGCLR, mask);
}
// First find if IRQ is claimed by chain
sysIntr = NKCallIntChain((UCHAR)irq);
if (sysIntr == SYSINTR_CHAIN || !NKIsSysIntrValid(sysIntr)) {
// IRQ wasn't claimed or SYSINTR isn't valid, use static mapping
sysIntr = OALIntrTranslateIrq(irq);
}
if (mask && (SYSINTR_NOP == sysIntr)) {
OUTREG32(&g_pIC0Regs->MASKSET, mask);
}
return sysIntr;
}
//------------------------------------------------------------------------------
//
// Function: OALIntr2Handler
//
// This is interrupt handler implementation for MIPS interrupt 2 on Au1.
//
UINT32 OALIntr2Handler()
{
UINT32 irq = OAL_INTR_IRQ_UNDEFINED;
UINT32 sysIntr = SYSINTR_NOP;
UINT32 status, mask = 0;
#ifdef OAL_ILTIMING
if (g_oalILT.active) g_oalILT.interrupts++;
#endif
// Get pending interrupt
if ((status = INREG32(&g_pIC1Regs->REQ0INT)) != 0) {
for (mask = 1, irq = 32; mask != 0; mask <<= 1, irq++) {
if ((status & mask) != 0) break;
}
// Disable it and clear edges
OUTREG32(&g_pIC1Regs->MASKCLR, mask);
OUTREG32(&g_pIC1Regs->RISINGCLR, mask);
OUTREG32(&g_pIC1Regs->FALLINGCLR, mask);
}
// First find if IRQ is claimed by chain
sysIntr = NKCallIntChain((UCHAR)irq);
if (sysIntr == SYSINTR_CHAIN || !NKIsSysIntrValid(sysIntr)) {
// IRQ wasn't claimed or SYSINTR isn't valid, use static mapping
sysIntr = OALIntrTranslateIrq(irq);
}
if (mask && (SYSINTR_NOP == sysIntr)) {
OUTREG32(&g_pIC1Regs->MASKSET, mask);
}
return sysIntr;
}
//------------------------------------------------------------------------------
//
// Function: OALIntr3Handler
//
// This is interrupt handler implementation for MIPS interrupt 3 on Au1.
//
UINT32 OALIntr3Handler()
{
UINT32 irq = OAL_INTR_IRQ_UNDEFINED;
UINT32 sysIntr = SYSINTR_NOP;
UINT32 status, mask = 0;
#ifdef OAL_ILTIMING
if (g_oalILT.active) g_oalILT.interrupts++;
#endif
// Get pending interrupt
if ((status = INREG32(&g_pIC1Regs->REQ1INT)) != 0) {
for (mask = 1, irq = 32; mask != 0; mask <<= 1, irq++) {
if ((status & mask) != 0) break;
}
// Disable it and clear edges
OUTREG32(&g_pIC1Regs->MASKCLR, mask);
OUTREG32(&g_pIC1Regs->RISINGCLR, mask);
OUTREG32(&g_pIC1Regs->FALLINGCLR, mask);
}
// First find if IRQ is claimed by chain
sysIntr = NKCallIntChain((UCHAR)irq);
if (sysIntr == SYSINTR_CHAIN || !NKIsSysIntrValid(sysIntr)) {
// IRQ wasn't claimed or SYSINTR isn't valid, use static mapping
sysIntr = OALIntrTranslateIrq(irq);
}
if (mask && (SYSINTR_NOP == sysIntr)) {
OUTREG32(&g_pIC1Regs->MASKSET, mask);
}
return sysIntr;
}
//------------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -