⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 startup.s

📁 Windows CE 6.0 BSP for VOIPAC Board (PXA270) Version 2b.
💻 S
字号:
;
; Copyright (c) Microsoft Corporation.  All rights reserved.
;
;
; Use of this sample source code is subject to the terms of the Microsoft
; license agreement under which you licensed this sample source code. If
; you did not accept the terms of the license agreement, you are not
; authorized to use this sample source code. For the terms of the license,
; please see the license agreement between you and Microsoft or, if applicable,
; see the LICENSE.RTF on your install media or the root of your tools installation.
; THE SAMPLE SOURCE CODE IS PROVIDED "AS IS", WITH NO WARRANTIES.
;

    INCLUDE kxarm.h
    INCLUDE bulverde.inc
    INCLUDE mainstoneii.inc
    INCLUDE image_cfg.inc
    
    INCLUDE xlli_Bulverde_defs.inc
;    INCLUDE xlli_Mainstone_defs.inc
   
    
    TEXTAREA

    IMPORT	main
    IMPORT OALVAtoPA
    IMPORT OALPAtoVA

    ; Included within the text section in order that a relative offset can be
    ; computed in the code below.
    ;
    INCLUDE oemaddrtab_cfg.inc

;-------------------------------------------------------------------------------
;
; OALStartUp: OEM bootloader startup code.  This routine will:
;
; * Copy the image to RAM if it's not already running there.
;
; * Set up the MMU and Dcache for the bootloader.
;
; * Initialize the first-level page table based up the contents
;   of the MemoryMap array and enable the MMU and caches.
;
; Inputs: None.
; 
; On return: N/A.
;
; Register used:
;
;-------------------------------------------------------------------------------
;
    ALIGN
    
    LEAF_ENTRY OALStartUp

    ; Initialize the hex LEDs on the Mainstone II board.  These use GPIOs which were
    ; configured in the OALXScaleSetFrequencies callback during clock initialization.
    ;
;    bl      Init_HexLEDs

    ; Copy the bootloader image from flash to RAM.  The image is configured
    ; to run in RAM, but is stored in flash.  Absolute address references
    ; should be avoided until the image has been relocated and the MMU enabled.
    ;
    ; TODO - check to see if the PC is already in RAM.
    ;
    ; NOTE: The destination (RAM) address must match the address in the
    ; bootloader's .bib file.  The latter dictates the code fix-up addresses.
    ;
    ldr     r8, =IMAGE_BOOT_BLDRIMAGE_FLASH_PA_START ; Bootloader is stored at the base of the boot flash.
                                                   ; Bootloader is fixed up to run in SDRAM (this value
                                                   ; must match the NK start address in the .bib file).
    ldr     r1, =IMAGE_BOOT_BLDRIMAGE_RAM_PA_START
    ldr     r2, =(IMAGE_BOOT_BLDRIMAGE_RAM_SIZE / 16)    ; Bootloader image length (this must be <= the NK
                                                   ; length in the .bib file).  We are block-copying 
                                                   ; 16-bytes per iteration.
                                                   
    ; Do 4x32-bit block copies from flash->RAM (corrupts r4-r7).
    ;
10  ldmia   r8!, {r4-r7}        ; Loads from flash (post increment).
    stmia   r1!, {r4-r7}        ; Stores to RAM (post increment).
    subs    r2, r2, #1          ;
    bne     %B10                ; Done?

    ; Verify that the copy succeeded by comparing the flash and RAM contents.
    ;
    ldr     r0, =IMAGE_BOOT_BLDRIMAGE_RAM_SIZE
    ldr     r1, =IMAGE_BOOT_BLDRIMAGE_RAM_PA_START
    ldr     r2, =IMAGE_BOOT_BLDRIMAGE_FLASH_PA_START

VERIFY_LOOP
    ldr     r3, [r1], #4        ; Read longword from DRAM.
    ldr     r4, [r2], #4        ; Read longword from flash.
    cmp     r3, r4              ; Compare.
    bne     VERIFY_FAILURE      ; Not the same? Fail.
    subs    r0, r0, #4          ;
    bne     VERIFY_LOOP         ; Continue?
    b       VERIFY_DONE         ; Done (success).

VERIFY_FAILURE
;    ldr     r0, =MAINSTONEII_BASE_REG_PA_FPGA
;    sub     r1, r1, #4          ; Bad RAM address.
;    setHexLED  r0, r1           ; Display address.
STALL1
    b       STALL1              ; Spin forever.

VERIFY_DONE

    ; Now that we've copied ourselves to RAM, jump to the RAM image.  Use the "CodeInRAM" label
    ; to determine the RAM-based code address to which we should jump.
    ;
    add     r2, pc, #CODEINRAM-(.+8)          ; Calculate the relative offset to the 'CodeInRAM' label.
    sub     r2, r2, #IMAGE_BOOT_BLDRIMAGE_FLASH_OFFSET
    ldr     r1, =IMAGE_BOOT_BLDRIMAGE_RAM_PA_START    ; Get the RAM address to which we copied ourself.
    add     r1, r1, r2                        ; Calculate the RAM address of the 'CodeInRAM' label.
    mov     pc, r1                            ;
    nop
    nop
    nop

CODEINRAM

    ; We're now running out of RAM.
    ; 
;    ldr     r0, =MAINSTONEII_BASE_REG_PA_FPGA
;    mov     r1, pc              ; Get the RAM-based PC.
;    setHexLED  r0, r1           ; Display it.

    ; Now that we're running out of RAM, construct the first-level Section descriptors
    ; to create 1MB mapped regions from the addresses defined in the OEMAddressTable.
    ; This will allow us to enable the MMU and use a virtual address space that matches
    ; the mapping used by the OS image.
    ;
    ; We'll create two different mappings from the addresses specified:
    ;     [8000 0000 --> 9FFF FFFF] = Cacheable, Bufferable
    ;     [A000 0000 --> BFFF FFFF] = NonCacheable, nonBufferable
    ;
BUILDTTB

    add     r11, pc, #g_oalAddressTable - (. + 8)    ; Pointer to OEMAddressTable.
    
    ; Set the TTB.
    ;
    ldr     r9, =MAINSTONEII_BASE_PA_SDRAM    ; Physical address of the first-level table (base of SDRAM).
    ldr     r0, =0xFFFFC000                   ;
    and     r9, r9, r0                        ; Mask off TTB[31:0] (must be 0's).
    mcr     p15, 0, r9, c2, c0, 0             ; Set the TTB.

    ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    ; ~~~~~~~~~~ MAP CACHED and BUFFERED SECTION DESCRIPTORS ~~~~~~~~~~~~~~~~~~
    ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    mov     r0, #0x0E                         ; Section (1MB) descriptor; (C=B=1: write-back, read-allocate).
    orr     r0, r0, #0x400                    ; Set AP.
20  mov     r1, r11                           ; Pointer to OEMAddressTable.

    ; Start Crunching through the OEMAddressTable[]:
    ;
    ; r2 temporarily holds OEMAddressTable[VA]
    ; r3 temporarily holds OEMAddressTable[PHY]
    ; r4 temporarily holds OEMAddressTable[#MB]
    ;
25  ldr     r2, [r1], #4                       ; Virtual (cached) address to map physical address to.
    ldr     r3, [r1], #4                       ; Physical address to map from.
    ldr     r4, [r1], #4                       ; Number of MB to map.

    cmp     r4, #0                             ; End of table?
    beq     %F29

    ; r2 holds the descriptor address (virtual address)
    ; r0 holds the actual section descriptor
    ;

    ; Create descriptor address.
    ;
    ldr     r6, =0xFFF00000
    and     r2, r2, r6             ; Only VA[31:20] are valid.
    orr     r2, r9, r2, LSR #18    ; Build the descriptor address:  r2 = (TTB[31:14} | VA[31:20] >> 18)

    ; Create the descriptor.
    ;
    ldr     r6, =0xFFF00000
    and     r3, r3, r6             ; Only PA[31:20] are valid for the descriptor and the rest will be static.
    orr     r0, r3, r0             ; Build the descriptor: r0 = (PA[31:20] | the rest of the descriptor)

    ; Store the descriptor at the proper (physical) address
    ;
28  str     r0, [r2], #4
    add     r0, r0, #0x00100000    ; Section descriptor for the next 1MB mapping (just add 1MB).
    sub     r4, r4, #1             ; Decrement number of MB left.
    cmp     r4, #0                 ; Done?
    bne     %B28                   ; No - map next MB.

    bic     r0, r0, #0xF0000000    ; Clear section base address field.
    bic     r0, r0, #0x0FF00000    ; Clear section base address field.
    b       %B25                   ; Get and process the next OEMAddressTable element.

    ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    ; ~~~~~~~~~~ MAP UNCACHED and UNBUFFERED SECTION DESCRIPTORS ~~~~~~~~~~~~~~
    ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

29  tst     r0, #8                 ; Test for 'C' bit set (means we just used 
                                   ; above loop structure to map cached and buffered space).
    bic     r0, r0, #0x0C          ; Clear cached and buffered bits in the descriptor (clear C&B bits).
    add     r9, r9, #0x0800        ; Pointer to the first PTE for "unmapped uncached space" (0x2000 0000 + V_U_Adx).
    bne     %B20                   ; Repeat the descriptor setup for uncached space (map C=B=0 space).

ACTIVATEMMU
    ; The 1st Level Section Descriptors are setup. Initialize the MMU and turn it on.
    ;
    mov     r1, #1
    mcr     p15, 0, r1, c3, c0, 0   ; Set up access to domain 0.
    mcr     p15, 0, r0, c8, c7, 0   ; Flush the instruction and data TLBs.
    mcr     p15, 0, r1, c7, c10, 4  ; Drain the write and fill buffers.

    mov     r1, #0x78               ; Bits [6:3] must be written as 1's.
    orr     r1, r1, #0x1            ; Enable MMU.
    orr     r1, r1, #0x1000         ; Enable IC.
    orr     r1, r1, #0x0800         ; Enable BTB.
    orr     r1, r1, #0x4            ; Enable DC.
    ldr     r2, =VirtualStart       ; Get virtual address of 'VirtualStart' label.
    cmp     r2, #0                  ; Make sure no stall on "mov pc,r2" below.

    ; Display status on the LEDs.
    ;
;    ldr     r5, =MAINSTONEII_BASE_REG_PA_FPGA
;    ldr     r8, =0x000c0de9
;    setHexLED   r5, r8

    ; Enable the MMU.
    ;
    mcr     p15, 0, r1, c1, c0, 0   ; MMU ON:  All memory accesses are now virtual.

    ; Jump to the virtual address of the 'VirtualStart' label.
    ;
    mov     pc, r2                  ;
    nop
    nop
    nop

    ; *************************************************************************
    ; *************************************************************************
    ; The MMU and caches are now enabled and we're running in a virtual
    ; address space.
    ;
    
    ALIGN
    
VirtualStart

    ; Set up a supervisor mode stack.
    ; Place it in cached SDRAM; especially important for performance of the
    ; MinCryptXXX() functions in secure_eboot.
    ;
    ; NOTE: These values must match the OEMAddressTable and .bib file entries for
    ; the bootloader.
    ;
    ldr     sp, =IMAGE_BOOT_STACK_RAM_CA_START

    ; Jump to the C entrypoint.
    ;
    bl      main                              ; Jump to main.c::main(), never to return...
    nop
    nop
    nop
    
STALL2
    b      STALL2 



;-------------------------------------------------------------------------------
;
; Init_HexLEDs: Initializes the Mainstone II board logic to enable the hex LEDs.
;
; Inputs: None.
; 
; On return: N/A.
;
; Register used: r0-r3
;
;-------------------------------------------------------------------------------
;
;    ALIGN
;Init_HexLEDs
;
;    ldr     r3, =BULVERDE_BASE_REG_PA_MEMC
;    ldr     r2, =xlli_MSC1_value
;    str     r2, [r3, #xlli_MSC1_offset]       ; Need to set MSC1 before trying to write to the HEX LEDs
;    ldr     r2, [r3, #xlli_MSC1_offset]       ; Need to read it back to make sure the value latches (see MSC section of manual)
;
;    ldr     r1, =MAINSTONEII_BASE_REG_PA_FPGA
;    mov     r0, #0x0
;    str     r0, [r1, #LEDCTL_OFFSET]          ; Blank hex & discrete leds
;    setHexLED   r1, r0
;
;  IF Interworking :LOR: Thumbing
;    bx      lr
;  ELSE
;    mov     pc, lr                            ; Return to caller.
;  ENDIF
;


;-------------------------------------------------------------------------------
;
; void Launch(UINT32 pFunc): This function launches the program at pFunc (pFunc
;                            is a physical address).  The MMU is disabled just
;                            before jumping to specified address.
;
; Inputs: pFunc (r0) - Physical address of program to Launch.
; 
; On return: None - the launched program never returns.
;
; Register used:
;
;-------------------------------------------------------------------------------
;
    ALIGN
    LEAF_ENTRY Launch
   
    ; r3 now contains the physical launch address.
    ;
    mov     r3, r0

    ; Compute the physical address of the PhysicalStart tag.  We'll jump to this
    ; address once we've turned the MMU and caches off.
    ;
    stmdb   sp!, {r3}
    ldr     r0, =PhysicalStart
    bl      OALVAtoPA
    nop
    ldmia   sp!, {r3}
    
    ; r0 now contains the physical address of 'PhysicalStart'.
    ; r3 now contains the physical launch address.
   
    ; Next, we disable the MMU, and I&D caches.
    ;
    mov     r1, #0x0078
    mcr     p15, 0, r1, c1, c0, 0

    
    ; Jump to 'PhysicalStart'.
    ;
    mov  pc, r0
    nop
    nop
    nop
    nop

PhysicalStart

    ; Flush the I&D TLBs.
    ;
    mcr     p15, 0, r2, c8, c7, 0   ; Flush the I&D TLBs

    ; Jump to the physical launch address.  This should never return...
    ;    
    mov     pc, r3
    nop
    nop
    nop
    nop
    nop
    nop
       
    END

    

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -