⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 arc.js

📁 这是一个ajax的例子大家好好的看看就是一个鱼眼的效果
💻 JS
字号:
if(!dojo._hasResource["dojox.gfx.arc"]){ //_hasResource checks added by build. Do not use _hasResource directly in your code.dojo._hasResource["dojox.gfx.arc"] = true;dojo.provide("dojox.gfx.arc");dojo.require("dojox.gfx.matrix");(function(){	var m = dojox.gfx.matrix,		unitArcAsBezier = function(alpha){			// summary: return a start point, 1st and 2nd control points, and an end point of			//		a an arc, which is reflected on the x axis			// alpha: Number: angle in radians, the arc will be 2 * angle size			var cosa  = Math.cos(alpha), sina  = Math.sin(alpha),				p2 = {x: cosa + (4 / 3) * (1 - cosa), y: sina - (4 / 3) * cosa * (1 - cosa) / sina};			return {	// Object				s:  {x: cosa, y: -sina},				c1: {x: p2.x, y: -p2.y},				c2: p2,				e:  {x: cosa, y: sina}			};		},		twoPI = 2 * Math.PI, pi4 = Math.PI / 4, pi8 = Math.PI / 8, 		pi48 = pi4 + pi8, curvePI4 = unitArcAsBezier(pi8);	dojo.mixin(dojox.gfx.arc, {		unitArcAsBezier: unitArcAsBezier,		curvePI4: curvePI4,		arcAsBezier: function(last, rx, ry, xRotg, large, sweep, x, y){			// summary: calculates an arc as a series of Bezier curves			//	given the last point and a standard set of SVG arc parameters,			//	it returns an array of arrays of parameters to form a series of			//	absolute Bezier curves.			// last: Object: a point-like object as a start of the arc			// rx: Number: a horizontal radius for the virtual ellipse			// ry: Number: a vertical radius for the virtual ellipse			// xRotg: Number: a rotation of an x axis of the virtual ellipse in degrees			// large: Boolean: which part of the ellipse will be used (the larger arc if true)			// sweep: Boolean: direction of the arc (CW if true)			// x: Number: the x coordinate of the end point of the arc			// y: Number: the y coordinate of the end point of the arc						// calculate parameters			large = Boolean(large);			sweep = Boolean(sweep);			var xRot = m._degToRad(xRotg),				rx2 = rx * rx, ry2 = ry * ry,				pa = m.multiplyPoint(					m.rotate(-xRot), 					{x: (last.x - x) / 2, y: (last.y - y) / 2}				),				pax2 = pa.x * pa.x, pay2 = pa.y * pa.y,				c1 = Math.sqrt((rx2 * ry2 - rx2 * pay2 - ry2 * pax2) / (rx2 * pay2 + ry2 * pax2));			if(isNaN(c1)){ c1 = 0; }			var	ca = {					x:  c1 * rx * pa.y / ry,					y: -c1 * ry * pa.x / rx				};			if(large == sweep){				ca = {x: -ca.x, y: -ca.y};			}			// the center			var c = m.multiplyPoint(				[					m.translate(						(last.x + x) / 2,						(last.y + y) / 2					),					m.rotate(xRot)				], 				ca			);			// calculate the elliptic transformation			var elliptic_transform = m.normalize([				m.translate(c.x, c.y),				m.rotate(xRot),				m.scale(rx, ry)			]);			// start, end, and size of our arc			var inversed = m.invert(elliptic_transform),				sp = m.multiplyPoint(inversed, last),				ep = m.multiplyPoint(inversed, x, y),				startAngle = Math.atan2(sp.y, sp.x),				endAngle   = Math.atan2(ep.y, ep.x),				theta = startAngle - endAngle;	// size of our arc in radians			if(sweep){ theta = -theta; }			if(theta < 0){				theta += twoPI;			}else if(theta > twoPI){				theta -= twoPI;			}										// draw curve chunks			var alpha = pi8, curve = curvePI4, step  = sweep ? alpha : -alpha,				result = [];			for(var angle = theta; angle > 0; angle -= pi4){				if(angle < pi48){					alpha = angle / 2;					curve = unitArcAsBezier(alpha);					step  = sweep ? alpha : -alpha;					angle = 0;	// stop the loop				}				var c1, c2, e,					M = m.normalize([elliptic_transform, m.rotate(startAngle + step)]);				if(sweep){					c1 = m.multiplyPoint(M, curve.c1);					c2 = m.multiplyPoint(M, curve.c2);					e  = m.multiplyPoint(M, curve.e );				}else{					c1 = m.multiplyPoint(M, curve.c2);					c2 = m.multiplyPoint(M, curve.c1);					e  = m.multiplyPoint(M, curve.s );				}				// draw the curve				result.push([c1.x, c1.y, c2.x, c2.y, e.x, e.y]);				startAngle += 2 * step;			}			return result;	// Object		}	});})();}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -