📄 project3.m
字号:
function Porject3()
clear;
clc;
close all;
load ex1.mat;
labels = wdbc(:,1);
data = wdbc(:,2:end);
[confmat1,acc1,accstd1]=linear_classify_Mfold(data,labels,2,1,1,0);
clear all;
load midtermdata.mat;
data=x(:,3:end-1);
labels=x(:,end);
% data = [normrnd(0,1,4000,1),normrnd(0,1,4000,1);
% normrnd(-4,1,1000,1),normrnd(-4,1,1000,1);
% normrnd(5,1,3000,1),normrnd(5,1,3000,1)
% normrnd(8,1,2000,1),normrnd(8,1,2000,1)];
% labels = [ones(5000,1);ones(5000,1)*2];
% Class1Index = (labels ==1);
% Class2Index = (labels ==2);
% data1 = x(Class1Index,:);
% data2 = x(Class2Index,:);
% plot(data1(:,1),data1(:,2),'r*');
% hold on
% plot(data2(:,1),data2(:,2),'b*');
muclass = zeros(8,2);
class111 = find(and(and(x(:,1)==1,x(:,2)==1),labels ==1));
class121 = find(and(and(x(:,1)==1,x(:,2)==2),labels ==1));
class211 = find(and(and(x(:,1)==2,x(:,2)==1),labels ==1));
class221 = find(and(and(x(:,1)==2,x(:,2)==2),labels ==1));
class112 = find(and(and(x(:,1)==1,x(:,2)==1),labels ==2));
class122 = find(and(and(x(:,1)==1,x(:,2)==2),labels ==2));
class212 = find(and(and(x(:,1)==2,x(:,2)==1),labels ==2));
class222 = find(and(and(x(:,1)==2,x(:,2)==2),labels ==2));
muclass(1,:) = mean(x(class111,3:4));
muclass(2,:) = mean(x(class121,3:4));
muclass(3,:) = mean(x(class211,3:4));
muclass(4,:) = mean(x(class221,3:4));
muclass(5,:) = mean(x(class112,3:4));
muclass(6,:) = mean(x(class122,3:4));
muclass(7,:) = mean(x(class212,3:4));
muclass(8,:) = mean(x(class222,3:4));
figure(1)
plot(x(class111,3),x(class111,4),'r*');
hold on
plot(x(class112,3),x(class112,4),'b+');
legend('Class 1 with discrete feature (1,1)','Class 2 with discrete feature (1,1)');
figure(2);
plot(x(class121,3),x(class121,4),'r*');
hold on
plot(x(class122,3),x(class122,4),'b+');
legend('Class 2 with discrete feature (1,2)','Class 2 with discrete feature (1,2)');
figure(3);
plot(x(class211,3),x(class211,4),'r*');
hold on
plot(x(class212,3),x(class212,4),'b+');
legend('Class 3 with discrete feature (2,1)','Class 2 with discrete feature (2,1)');
figure(4);
plot(x(class221,3),x(class221,4),'r*');
hold on;
plot(x(class222,3),x(class222,4),'b+');
legend('Class 4 with discrete feature (2,2)','Class 2 with discrete feature (2,2)');
[confmat2,acc2,accstd2,weight, mu, sigma] = Mixed_Gaussian_classify_Mfold(data,labels,2,2);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -