📄 plelemrotlq.cpp
字号:
matrix d(tncomp,tncomp),dd; lsm = new double [9]; allocv (nne,nodes); nodecoord (nxi,neta); Mt->give_elemnodes (eid,nodes); for (ii=0;ii<nb;ii++){ allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocv (ncomp[ii],sig); allocv (ncomp[ii],auxsig); lhs = new double [ncomp[ii]*3]; rhs = new double [ncomp[ii]*3]; gauss_points (gp.a,w.a,intordsm[ii][ii]); nullv (lsm,9); nullv (rhs,ncomp[ii]*3); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; Mm->matstiff (d,ipp); ipp++; fillv (0.0,sig); for (jj=0;jj<nb;jj++){ allocv (ncomp[jj],eps); allocm (ncomp[ii],ncomp[jj],dd); if (Mp->strainaver==0) Mm->givestrain (lcid,ipp,cncomp[jj],ncomp[jj],eps); if (Mp->strainaver==1) //appstrain (lcid,eid,xi,eta,cncomp[jj],ncomp[jj],eps); dmatblock (ii,jj,d,dd); mxv (dd,eps,auxsig); addv (auxsig,sig,sig); destrm (dd); destrv (eps); } natcoord[0]=xi; natcoord[1]=eta; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,sig); } } solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[ii]); Mt->stress_nodal_values (nodes,nxi,neta,nxi,lhs,2,cncomp[ii],ncomp[ii],lcid); delete [] lhs; delete [] rhs; destrv (auxsig); destrv (sig); destrv (eps); destrv (w); destrv (gp); } delete [] lsm;}void planeelemrotlq::elem_stresses (double **stra,double **stre,long lcid,long eid,long ri,long ci){ long i,j,ii,jj,ipp; double xi,eta,*lsm,*lhs,*rhs; vector nxi(nne),neta(nne),gp,w,eps,sig,auxsig,natcoord(2); ivector nodes(nne); matrix d(tncomp,tncomp),dd; lsm = new double [9]; nodecoord (nxi,neta); Mt->give_elemnodes (eid,nodes); for (ii=0;ii<nb;ii++){ allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocv (ncomp[ii],sig); allocv (ncomp[ii],auxsig); lhs = new double [ncomp[ii]*3]; rhs = new double [ncomp[ii]*3]; gauss_points (gp.a,w.a,intordsm[ii][ii]); nullv (lsm,9); nullv (rhs,ncomp[ii]*3); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; Mm->matstiff (d,ipp); ipp++; fillv (0.0,sig); for (jj=0;jj<nb;jj++){ allocv (ncomp[jj],eps); allocm (ncomp[ii],ncomp[jj],dd); if (Mp->strainaver==0) //appval (xi,eta,cncomp[jj],ncomp[jj],eps,stra); if (Mp->strainaver==1) //appstrain (lcid,eid,xi,eta,cncomp[jj],ncomp[jj],eps); dmatblock (ii,jj,d,dd); mxv (dd,eps,auxsig); addv (auxsig,sig,sig); destrm (dd); destrv (eps); } natcoord[0]=xi; natcoord[1]=eta; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,sig); } } solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[ii]); nodal_values (stre,nxi,neta,nxi,lhs,2,cncomp[ii],ncomp[ii]); delete [] lhs; delete [] rhs; destrv (auxsig); destrv (sig); destrv (eps); destrv (w); destrv (gp); } delete [] lsm;}/** function computes stresses in arbitrary point on element @param eid - element id @param xi, eta - natural coordinates of the point @param fi,li - first and last indices @param sig - array containing stresses 11.5.2002*/void planeelemrotlq::appstress (long lcid,long eid,double xi,double eta,long fi,long ncomp,vector &sig){ long i,j,k; ivector nodes; vector nodval; if (ncomp != sig.n){ fprintf (stderr,"\n\n wrong interval of indices in function stress (%s, line %d).\n",__FILE__,__LINE__); abort (); } allocv (nne,nodes); allocv (nne,nodval); Mt->give_elemnodes (eid,nodes); k=0; for (i=fi;i<fi+ncomp;i++){ for (j=0;j<nne;j++){ nodval[j]=Mt->nodes[nodes[j]].stress[lcid*tncomp+i]; } sig[k]=approx (xi,eta,nodval); k++; } destrv (nodes); destrv (nodval);}void planeelemrotlq::allip_stresses (double **stre,long lcid,long eid,long ri,long ci){ long i,j,ii,jj,ipp; double xi,eta; vector sig,gp,w; allocv (tncomp,sig); for (ii=0;ii<nb;ii++){ for (jj=0;jj<nb;jj++){ if (intordsm[ii][jj]==0) continue; allocv (intordsm[ii][jj],gp); allocv (intordsm[ii][jj],w); gauss_points (gp.a,w.a,intordsm[ii][jj]); ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; for (i=0;i<intordsm[ii][jj];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][jj];j++){ eta=gp[j]; if (Mp->stressaver==0) //appval (xi,eta,0,tncomp,sig,stre); if (Mp->stressaver==1) appstress (lcid,eid,xi,eta,0,tncomp,sig); Mm->storestress (lcid,ipp,sig); ipp++; } } destrv (w); destrv (gp); } } destrv (sig);}void planeelemrotlq::stresses (long lcid,long eid,long ri,long ci){ long i,naep,ncp,sid; double **stra,**stre; vector coord,sig; if (Mp->stressaver==0){ stra = new double* [nne]; stre = new double* [nne]; for (i=0;i<nne;i++){ stra[i] = new double [tncomp]; stre[i] = new double [tncomp]; } //elem_strains (stra,lcid,eid,ri,ci); elem_stresses (stra,stre,lcid,eid,ri,ci); } switch (Mm->stre.tape[eid]){ case nowhere:{ break; } case intpts:{ allip_stresses (stre,lcid,eid,ri,ci); break; } case enodes:{ break; } case userdefined:{ // number of auxiliary element points naep = Mm->stre.give_naep (eid); ncp = Mm->stre.give_ncomp (eid); sid = Mm->stre.give_sid (eid); allocv (ncp,sig); allocv (2,coord); for (i=0;i<naep;i++){ Mm->stre.give_aepcoord (sid,i,coord); if (Mp->stressaver==0) //appval (coord[0],coord[1],0,ncp,sig,stre); if (Mp->stressaver==1) appstress (lcid,eid,coord[0],coord[1],0,ncp,sig); Mm->stre.storevalues(lcid,eid,i,sig); } destrv (sig); destrv (coord); break; } default:{ fprintf (stderr,"\n\n unknown stress point is required in function planeelemrotlq::stresses (%s, line %d).\n",__FILE__,__LINE__); } } if (Mp->stressaver==0){ for (i=0;i<nne;i++){ delete [] stra[i]; delete [] stre[i]; } delete [] stra; delete [] stre; }}/** function computes internal forces (from correct stresses) @param lcid - number of load case @param eid - element id @param ri,ci - row and column indices @param ifor - vector of internal forces JK, 28.7.2001*/void planeelemrotlq::internal_forces (long lcid,long eid,long ri,long ci,vector &ifor){ long i,j,k,ii,ipp; double xi,eta,jac,thick; ivector nodes(nne),cn(ndofe); vector x(nne),y(nne),w,gp,t(nne),eps(tncomp),sig,contr(ndofe),l(ned),nx(ned),ny(ned); matrix gm; Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); Mc->give_thickness (eid,nodes,t); auxdata (x,y,l,nx,ny); fillv (0.0,ifor); for (ii=0;ii<nb;ii++){ allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocm (ncomp[ii],ndofe,gm); allocv (ncomp[ii],sig); gauss_points (gp.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; thick = approx (xi,eta,t); //appstrain (lcid,eid,xi,eta,0,tncomp,eps); Mm->storestrain (lcid,ipp,eps); Mm->computenlstresses (ipp); Mm->givestress (lcid,ipp,cncomp[ii],ncomp[ii],sig); geom_matrix_block (gm,ii,x,y,xi,eta,l,nx,ny,jac); mtxv (gm,sig,contr); cmulv (jac*w[i]*w[j]*thick,contr); for (k=0;k<contr.n;k++){ ifor[k]+=contr[k]; } ipp++; } } destrv (sig); destrm (gm); destrv (w); destrv (gp); }}void planeelemrotlq::res_internal_forces (long lcid,long eid,vector &ifor){ internal_forces (lcid,eid,0,0,ifor);}/** function returns coordinates of integration points @param eid - element id @param ipp - integration point pointer @param ri,ci - row and column indices @param coord - vector of coordinates 10.1.2002*/void planeelemrotlq::ipcoord (long eid,long ipp,long ri,long ci,vector &coord){ long i,j,ii; double xi,eta; vector x(nne),y(nne),w(intordsm[ri][ci]),gp(intordsm[ri][ci]); gauss_points (gp.a,w.a,intordsm[ri][ci]); Mt->give_node_coord2d (x,y,eid); ii=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[ri][ci];i++){ xi=gp[i]; for (j=0;j<intordsm[ri][ci];j++){ eta=gp[j]; if (ii==ipp){ coord[0]=approx (xi,eta,x); coord[1]=approx (xi,eta,y); coord[2]=0.0; } ii++; } }}void planeelemrotlq::inicipval(long eid, long ri, long ci, matrix &nodval, inictype *ictn){ long i, j, k, l, ipp; long ii, jj, nv = nodval.n; long nstra; double xi, eta, ipval; vector w, gp, anv(nne); nstra = 0; for (j = 0; j < nv; j++) // for all initial values { for(i = 0; i < nne; i++) // for all nodes on element anv[i] = nodval[i][j]; for (ii = 0; ii < nb; ii++) { for (jj = 0; jj < nb; jj++) { ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; if (intordsm[ii][jj] == 0) continue; allocv (intordsm[ii][jj],gp); allocv (intordsm[ii][jj],w); gauss_points (gp.a,w.a,intordsm[ii][jj]); for (k = 0; k < intordsm[ii][jj]; k++) { xi=gp[k]; for (l = 0; l < intordsm[ii][jj]; l++) { eta=gp[l]; // value in integration point ipval = approx (xi,eta,anv); if ((ictn[i] & inistrain) && (j < Mm->ip[ipp].ncompstr)) { Mm->ip[ipp].strain[j] += ipval; ipp++; continue; } if ((ictn[i] & inistress) && (j < nstra + Mm->ip[ipp].ncompstr)) { Mm->ip[ipp].stress[j] += ipval; ipp++; continue; } if ((ictn[i] & iniother) && (j < nv)) { Mm->ip[ipp].other[j] += ipval; ipp++; continue; } ipp++; } } destrv (gp); destrv (w); } } if (ictn[i] & inistrain) nstra++; }}/** function computes volume appropriate to integration point 2.3.2004, JK*/void planeelemrotlq::ipvolume (long eid,long ri,long ci){ long i,j,ii,jj,ipp; double xi,eta,jac; vector x(nne),y(nne),w,gp; Mt->give_node_coord2d (x,y,eid); for (ii=0;ii<nb;ii++){ for (jj=0;jj<nb;jj++){ if (intordsm[ii][jj]==0) continue; allocv (intordsm[ii][jj],w); allocv (intordsm[ii][jj],gp); gauss_points (gp.a,w.a,intordsm[ii][jj]); ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; for (i=0;i<intordsm[ii][jj];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][jj];j++){ eta=gp[j]; jac_2d (jac,x,y,xi,eta); jac*=w[i]*w[j]; Mm->storeipvol (ipp,jac); ipp++; } } destrv (gp); destrv (w); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -