📄 plelemrotlq.cpp
字号:
vector x(nne),y(nne); Mt->give_node_coord2d (x,y,eid); Mt->give_elemnodes (eid,nodes); stiffness_matrix (eid,0,0,sm,x,y); // transformation of stiffness matrix transf = Mt->locsystems (nodes); if (transf>0){ matrix tmat (ndofe,ndofe); transf_matrix (nodes,tmat); glmatrixtransf (sm,tmat); }}/** function computes mass matrix of the plane stress quadrilateral finite element with rotationale degrees of freedom wtih bilinear approximation functions @param eid - number of element @param mm - mass matrix 8.12.2001*/void planeelemrotlq::mass_matrix (long eid,matrix &mm,vector &x,vector &y){ long i,j; double jac,xi,eta,w1,w2,thick,rho; ivector nodes(nne); vector l(nne),nx(nne),ny(nne),w(intordmm),gp(intordmm),t(nne),dens(nne); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mc->give_thickness (eid,nodes,t); Mc->give_density (eid,nodes,dens); auxdata (x,y,l,nx,ny); gauss_points (gp.a,w.a,intordmm); fillm (0.0,mm); for (i=0;i<intordmm;i++){ xi=gp[i]; w1=w[i]; for (j=0;j<intordmm;j++){ eta=gp[j]; w2=w[i]; jac_2d (jac,x,y,xi,eta); bf_matrix (n,xi,eta,l,nx,ny); thick = approx (xi,eta,t); rho = approx (xi,eta,dens); jac*=w1*w2*thick*rho; nnj (mm.a,n.a,jac,n.m,n.n); } } }void planeelemrotlq::res_mass_matrix (long eid,matrix &mm){ vector x(nne),y(nne); Mt->give_node_coord2d (x,y,eid); mass_matrix (eid,mm,x,y);}/** function computes load matrix of the plane stress rectangular finite element with bilinear approximation functions load vector is obtained after premultiplying load matrix by nodal load values @param eid - number of element @param lm - load matrix 25.7.2001*/void planeelemrotlq::load_matrix (long eid,matrix &lm){ long i,j; double jac,xi,eta,w1,w2,thick; ivector nodes(nne); vector x(nne),y(nne),l(nne),nx(nne),ny(nne),w(intordmm),gp(intordmm),t(nne); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mc->give_thickness (eid,nodes,t); Mt->give_node_coord2d (x,y,eid); auxdata (x,y,l,nx,ny); gauss_points (gp.a,w.a,intordmm); fillm (0.0,lm); for (i=0;i<intordmm;i++){ xi=gp[i]; w1=w[i]; for (j=0;j<intordmm;j++){ eta=gp[j]; w2=w[j]; jac_2d (jac,x,y,xi,eta); bf_matrix (n,xi,eta,l,nx,ny); thick = approx (xi,eta,t); jac*=w1*w2*thick; nnj (lm.a,n.a,jac,n.m,n.n); } } }void planeelemrotlq::res_mainip_strains (long lcid,long eid){ long i; vector aux,x(nne),y(nne),r(ndofe); ivector cn(ndofe),nodes(nne); matrix tmat; Mt->give_node_coord2d (x,y,eid); Mt->give_elemnodes (eid,nodes); Mt->give_code_numbers (eid,cn.a); eldispl (lcid,eid,r.a,cn.a,ndofe); // transformation of displacement vector long transf = Mt->locsystems (nodes); if (transf>0){ allocv (ndofe,aux); allocm (ndofe,ndofe,tmat); transf_matrix (nodes,tmat); //locglobtransf (aux,r,tmat); lgvectortransf (aux,r,tmat); copyv (aux,r); destrv (aux); destrm (tmat); } for (i=0;i<nb;i++){ mainip_strains (lcid,eid,0,0,i,x,y,r); }}/** function computes strains in integration points of element @param lcid - load case id @param eid - element id @param ri - row index @param ci - column index @param ii - number of block @param x,y - arrays with node coordinates @param r - %vector of nodal displacements 10.5.2002*/void planeelemrotlq::mainip_strains (long lcid,long eid,long ri,long ci,long ii,vector &x,vector &y,vector &r){ long i,j,ipp; double xi,eta,jac; vector gp,w,eps,nx(ned),ny(ned),l(ned); matrix gm; auxdata (x,y,l,nx,ny); allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocv (ncomp[ii],eps); allocm (ncomp[ii],ndofe,gm); gauss_points (gp.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; geom_matrix_block (gm,ii,x,y,xi,eta,l,nx,ny,jac); mxv (gm,r,eps); Mm->storestrain (lcid,ipp,cncomp[ii],ncomp[ii],eps); ipp++; } } destrm (gm); destrv (eps); destrv (w); destrv (gp);}/** function computes strains in nodes of element @param lcid - load case id @param eid - element id @param ri,ci - row and column indices 10.5.2002*/void planeelemrotlq::nod_strains_ip (long lcid,long eid,long ri,long ci){ long i,j; ivector ipnum(nne),nod(nne); vector eps(tncomp); // numbers of integration points closest to nodes nodipnum (eid,ri,ci,ipnum); // node numbers of the element Mt->give_elemnodes (eid,nod); for (i=0;i<nne;i++){ // strains at the closest integration point Mm->givestrain (lcid,ipnum[i],eps); // storage of strains to the node j=nod[i]; Mt->nodes[j].storestrain (lcid,0,eps); } }/** function computes strains in nodes of element @param lcid - load case id @param eid - element id 10.5.2002*/void planeelemrotlq::nod_strains_comp (long lcid,long eid,double **stra){ long i,j; double jac; ivector cn(ndofe),nodes(nne); vector x(nne),y(nne),l(nne),nx(nne),ny(nne),nxi(nne),neta(nne),r(ndofe),eps(tncomp),natcoord(2),aux; matrix tmat,gm(tncomp,ndofe); // node coordinates Mt->give_node_coord2d (x,y,eid); // node numbers Mt->give_elemnodes (eid,nodes); // code numbers of the element Mt->give_code_numbers (eid,cn.a); // nodal displacements eldispl (lcid,eid,r.a,cn.a,ndofe); // transformation of displacement vector long transf = Mt->locsystems (nodes); if (transf>0){ allocv (ndofe,aux); allocm (ndofe,ndofe,tmat); transf_matrix (nodes,tmat); //locglobtransf (aux,r,tmat); lgvectortransf (aux,r,tmat); copyv (aux,r); destrv (aux); destrm (tmat); } // natural coordinates of element nodes nodecoord (nxi,neta); auxdata (x,y,l,nx,ny); // loop over nodes for (i=0;i<nne;i++){ // geometric matrix geom_matrix (gm,x,y,nxi[i],neta[i],l,nx,ny,jac); // strain computation mxv (gm,r,eps); for (j=0;j<eps.n;j++){ stra[i][j]=eps[j]; } }}/** function computes all strain components at all integration points @param lcid - load case id @param eid - element id JK, 26.9.2004*/void planeelemrotlq::res_allip_strains (long lcid,long eid){ // blocks of strain components at integration points res_mainip_strains (lcid,eid); // all strain components at all integration points allip_strains (lcid,eid,0,0);}/** function assembles all values at all integration points @param lcid - load case id @param eid - element id @param ri,ci - row and column indices JK, 25.9.2004*/void planeelemrotlq::allip_strains (long lcid,long eid,long ri,long ci){ long i,j,ipp; vector eps(tncomp),epsnor(ncomp[0]),epsshear(ncomp[1]),aux(tncomp); ipp=Mt->elements[eid].ipp[ri+1][ci+1]; Mm->givestrain (lcid,ipp,cncomp[1],epsshear); ipp=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[0][0];i++){ for (j=0;j<intordsm[0][0];j++){ Mm->givestrain (lcid,ipp,cncomp[0],ncomp[0],eps); eps[2]=epsshear[0]; Mm->storestrain (lcid,ipp,eps); addv (aux,eps,aux); ipp++; } } cmulv(0.25,aux,eps); Mm->storestrain (lcid,ipp,eps);}/** function computes strains at strain points @param lcid - load case id @param eid - element id @param ri,ci - row and column indices JK*/void planeelemrotlq::strains (long lcid,long eid,long ri,long ci){ long i,naep,ncp,sid; vector coord,eps; switch (Mm->stra.tape[eid]){ case nowhere:{ break; } case intpts:{ allip_strains (lcid,eid,ri,ci); break; } case enodes:{ nod_strains_ip (lcid,eid,ri,ci); break; } case userdefined:{ // number of auxiliary element points naep = Mm->stra.give_naep (eid); ncp = Mm->stra.give_ncomp (eid); sid = Mm->stra.give_sid (eid); allocv (ncp,eps); allocv (2,coord); for (i=0;i<naep;i++){ Mm->stra.give_aepcoord (sid,i,coord); if (Mp->strainaver==0) //appval (coord[0],coord[1],0,ncp,eps,stra); if (Mp->strainaver==1) //appstrain (lcid,eid,coord[0],coord[1],0,ncp,eps); Mm->stra.storevalues(lcid,eid,i,eps); } destrv (eps); destrv (coord); break; } default:{ fprintf (stderr,"\n\n unknown strain point is required in function planeelemlq::strains (%s, line %d).\n",__FILE__,__LINE__); } } }/** function assembles natural coordinates of nodes of element @param xi - array containing natural coordinates xi @param eta - array containing natrual coordinates eta 10.5.2002*/void planeelemrotlq::nodecoord (vector &xi,vector &eta){ xi[0] = 1.0; eta[0] = 1.0; xi[1] = -1.0; eta[1] = 1.0; xi[2] = -1.0; eta[2] = -1.0; xi[3] = 1.0; eta[3] = -1.0;}/** function returns numbers of integration point closest to element nodes @param eid - element id @param ri,ci - row and column indices @param ipnum - array of numbers JK, 25.9.2004*/void planeelemrotlq::nodipnum (long eid,long ri,long ci,ivector &ipnum){ long i,j; j=intordsm[0][0]; i=Mt->elements[eid].ipp[ri][ci]; ipnum[0]=i+j*(j-1)+j-1; ipnum[1]=i+j-1; ipnum[2]=i; ipnum[3]=i+j*(j-1);}/** function computes stresses in integration points of element @param eid - element id @param ri - row index @param ci - column index 10.5.2002*/void planeelemrotlq::mainip_stresses (long lcid,long eid,long ri,long ci){ long i,j,ii,jj,ipp; double xi,eta; vector gp,w,eps,sig,auxsig; matrix d,dd; allocm (tncomp,tncomp,d); for (ii=0;ii<nb;ii++){ allocv (ncomp[ii],sig); allocv (ncomp[ii],auxsig); allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); gauss_points (gp.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; Mm->matstiff (d,ipp); fillv (0.0,sig); for (jj=0;jj<nb;jj++){ allocv (ncomp[jj],eps); allocm (ncomp[ii],ncomp[jj],dd); //appstrain (lcid,eid,xi,eta,cncomp[jj],ncomp[jj],eps); dmatblock (ii,jj,d,dd); mxv (dd,eps,auxsig); addv (auxsig,sig,sig); destrm (dd); destrv (eps); } Mm->storestress (lcid,ipp,cncomp[ii],ncomp[ii],sig); ipp++; } } destrv (w); destrv (gp); destrv (auxsig); destrv (sig); } }void planeelemrotlq::nod_stresses (long lcid,long eid,long ri,long ci){ long i,j,ii,jj,ipp; double xi,eta,*lsm,*lhs,*rhs; vector nxi(nne),neta(nne),gp,w,eps,sig,auxsig,natcoord(2); ivector nodes(nne);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -