⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 linhex-16ip.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
📖 第 1 页 / 共 3 页
字号:
   @param val - array containing strains on element   @param lcid - load case id   @param eid - element id      19.9.2002*/void linhex::elem_strains (double **stra,long lcid,long eid,long ri,long ci){  long i,j,k,ii,ipp;  double xi,eta,zeta,*lsm,*lhs,*rhs;  vector nxi(nne),neta(nne),nzeta(nne),gp,w,eps,natcoord(3);  lsm = new double [16];  nodecoord (nxi,neta,nzeta);    for (ii=0;ii<nb;ii++){    allocv (intordsm[ii][ii],gp);    allocv (intordsm[ii][ii],w);    allocv (ncomp[ii],eps);    lhs = new double [ncomp[ii]*4];    rhs = new double [ncomp[ii]*4];    gauss_points (gp.a,w.a,intordsm[ii][ii]);        nullv (lsm,16);    nullv (rhs,ncomp[ii]*4);        ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];    for (i=0;i<intordsm[ii][ii];i++){      xi=gp[i];      for (j=0;j<intordsm[ii][ii];j++){	eta=gp[j];	for (k=0;k<intordsm[ii][ii];k++){	  zeta=gp[k];	  	  Mm->givestrain (lcid,ipp,cncomp[ii],ncomp[ii],eps);	  	  natcoord[0]=xi;  natcoord[1]=eta;  natcoord[2]=zeta;	  matassem_lsm (lsm,natcoord);	  rhsassem_lsm (rhs,natcoord,eps);	  	  ipp++;	}      }    }            solve_lsm (lsm,lhs,rhs,Mp->zero,4,ncomp[ii]);    nodal_values (stra,nxi,neta,nzeta,lhs,3,cncomp[ii],ncomp[ii]);    delete [] lhs;  delete [] rhs;    destrv (eps);  destrv (w);  destrv (gp);  }    delete [] lsm;}/**   function computes strains in arbitrary point on element      @param lcid - load case id   @param eid - element id   @param xi, eta, zeta - natural coordinates of the point   @param fi - first index   @param ncomp - number of components   @param eps - array containing strains      11.5.2002*/void linhex::appstrain (long lcid,long eid,double xi,double eta,double zeta,long fi,long ncomp,vector &eps){  long i,j,k;  ivector nod(nne);  vector nodval(nne);    if (ncomp != eps.n){    fprintf (stderr,"\n\n wrong interval of indices in function strain (%s, line %d).\n",__FILE__,__LINE__);    abort ();  }  Mt->give_elemnodes (eid,nod);  k=0;  for (i=fi;i<fi+ncomp;i++){    for (j=0;j<nne;j++){      nodval[j]=Mt->nodes[nod[j]].strain[lcid*tncomp+i];    }    eps[k]=approx (xi,eta,zeta,nodval);    k++;  }}/**   function computes strains in all integration points      @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices      10.5.2002*/void linhex::allip_strains (double **stra,long lcid,long eid,long ri,long ci){  long i,j,k,ii,jj,ipp;  double xi,eta,zeta;  vector eps(tncomp),gp,w;    for (ii=0;ii<nb;ii++){    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;            allocv (intordsm[ii][jj],gp);      allocv (intordsm[ii][jj],w);      gauss_points (gp.a,w.a,intordsm[ii][jj]);      ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];            for (i=0;i<intordsm[ii][jj];i++){	xi=gp[i];	for (j=0;j<intordsm[ii][jj];j++){	  eta=gp[j];	  for (k=0;k<intordsm[ii][jj];k++){	    zeta=gp[k];	    	    if (Mp->strainaver==0)	      appval (xi,eta,zeta,0,tncomp,eps,stra);	    if (Mp->strainaver==1)	      appstrain (lcid,eid,xi,eta,zeta,0,tncomp,eps);	    	    Mm->storestrain (lcid,ipp,eps);	    ipp++;	  }	}      }      destrv (w);  destrv (gp);    }  }}void linhex::strains (long lcid,long eid,long ri,long ci){  long i,naep,ncp,sid;  double **stra;  vector coord,eps;    if (Mp->strainaver==0){    stra = new double* [nne];    for (i=0;i<nne;i++){      stra[i] = new double [tncomp];    }    elem_strains (stra,lcid,eid,ri,ci);  }    switch (Mm->stra.tape[eid]){  case nowhere:{    break;  }  case intpts:{    allip_strains (stra,lcid,eid,ri,ci);    break;  }  case enodes:{    break;  }  case userdefined:{    //  number of auxiliary element points    naep = Mm->stra.give_naep (eid);    ncp = Mm->stra.give_ncomp (eid);    sid = Mm->stra.give_sid (eid);    allocv (ncp,eps);    allocv (3,coord);    for (i=0;i<naep;i++){      Mm->stra.give_aepcoord (sid,i,coord);      if (Mp->strainaver==0)	appval (coord[0],coord[1],coord[2],0,ncp,eps,stra);      if (Mp->strainaver==1)	appstrain (lcid,eid,coord[0],coord[1],coord[2],0,ncp,eps);      Mm->stra.storevalues(lcid,eid,i,eps);    }    destrv (eps);    destrv (coord);    break;  }  default:{    fprintf (stderr,"\n\n unknown strain point is required in function planeelemlq::strains (%s, line %d).\n",__FILE__,__LINE__);  }  }    if (Mp->strainaver==0){    for (i=0;i<nne;i++){      delete [] stra[i];    }    delete [] stra;  }}/**   function assembles natural coordinates of nodes of element      @param xi - array containing natural coordinates xi   @param eta - array containing natrual coordinates eta   @param zeta - array containing natrual coordinates zeta      10.5.2002*/void linhex::nodecoord (vector &xi,vector &eta,vector &zeta){  xi[0] =  1.0;  eta[0] =  1.0;  zeta[0] =  1.0;  xi[1] = -1.0;  eta[1] =  1.0;  zeta[1] =  1.0;  xi[2] = -1.0;  eta[2] = -1.0;  zeta[2] =  1.0;  xi[3] =  1.0;  eta[3] = -1.0;  zeta[3] =  1.0;  xi[4] =  1.0;  eta[4] =  1.0;  zeta[4] = -1.0;  xi[5] = -1.0;  eta[5] =  1.0;  zeta[5] = -1.0;  xi[6] = -1.0;  eta[6] = -1.0;  zeta[6] = -1.0;  xi[7] =  1.0;  eta[7] = -1.0;  zeta[7] = -1.0;}/**   function computes strains in arbitrary point on element      @param xi, eta - natural coordinates of the point   @param eps - array containing strains   @param val - array containing values on element      11.5.2002*/void linhex::appval (double xi,double eta,double zeta,long fi,long nc,vector &eps,double **val){  long i,j,k;  vector nodval(nne);    k=0;  for (i=fi;i<fi+nc;i++){    for (j=0;j<nne;j++){      nodval[j]=val[j][i];    }    eps[k]=approx (xi,eta,zeta,nodval);    k++;  }}/**   function computes stresses in main integration points of element      @param lcid - load case id   @param eid - element id   @param ri - row index   @param ci - column index      10.5.2002*/void linhex::mainip_stresses (long lcid,long eid,long ri,long ci){  long i,j,k,ii,jj,ipp;  double xi,eta,zeta;  vector gp,w,eps,epst,epstt,sig,auxsig;  matrix d(tncomp,tncomp),dd;  for (ii=0;ii<nb;ii++){    if (intordsm[ii][ii]==0)  continue;        allocv (ncomp[ii],sig);    allocv (ncomp[ii],auxsig);    allocv (intordsm[ii][ii],gp);    allocv (intordsm[ii][ii],w);        gauss_points (gp.a,w.a,intordsm[ii][ii]);    ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];        for (i=0;i<intordsm[ii][ii];i++){      xi=gp[i];      for (j=0;j<intordsm[ii][ii];j++){	eta=gp[j];	for (k=0;k<intordsm[ii][ii];k++){	  zeta=gp[k];	  	  Mm->matstiff (d,ipp);	  	  fillv (0.0,sig);	  for (jj=0;jj<nb;jj++){	    allocv (ncomp[jj],eps);	    allocm (ncomp[ii],ncomp[jj],dd);	    if (Mp->strainaver==0)	      Mm->givestrain (lcid,ipp,cncomp[jj],ncomp[jj],eps);	    if (Mp->strainaver==1)	      appstrain (lcid,eid,xi,eta,zeta,cncomp[jj],ncomp[jj],eps);	    	    /*	    if (Mt->elements[eid].presctemp==1){	      allocv (tncomp,epstt);	      tempstrains (lcid,eid,ipp,xi,eta,zeta,epstt);	      allocv (ncomp[jj],epst);	      extract (epst,epstt,cncomp[jj],ncomp[jj]);	      subv (eps,epst,eps);	      destrv (epst);  destrv (epstt);	    }	    */	    dmatblock (ii,jj,d,dd);	    mxv (dd,eps,auxsig);	    addv (auxsig,sig,sig);	    destrm (dd);  destrv (eps);	  }	  	  Mm->storestress (lcid,ipp,sig);	  	  ipp++;	}      }    }        destrv (w);  destrv (gp);  destrv (auxsig);  destrv (sig);  }}/**   function computes stresses in nodes      @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices      10.5.2002*/void linhex::nod_stresses (long lcid,long eid,long ri,long ci){  long i,j,k,ii,jj,ipp;  double xi,eta,zeta,*lsm,*lhs,*rhs;  vector nxi(nne),neta(nne),nzeta(nne),r(ndofe),gp,w,eps,epst,epstt,sig,auxsig,natcoord(3);  ivector nodes(nne);  matrix d(tncomp,tncomp),dd;  lsm = new double [16];  nodecoord (nxi,neta,nzeta);  Mt->give_elemnodes (eid,nodes);  for (ii=0;ii<nb;ii++){    if (intordsm[ii][ii]==0)  continue;    allocv (intordsm[ii][ii],gp);    allocv (intordsm[ii][ii],w);    allocv (ncomp[ii],sig);    allocv (ncomp[ii],auxsig);    lhs = new double [ncomp[ii]*4];    rhs = new double [ncomp[ii]*4];    gauss_points (gp.a,w.a,intordsm[ii][ii]);        nullv (lsm,16);    nullv (rhs,ncomp[ii]*4);        ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];        for (i=0;i<intordsm[ii][ii];i++){      xi=gp[i];      for (j=0;j<intordsm[ii][ii];j++){	eta=gp[j];	for (k=0;k<intordsm[ii][ii];k++){	  zeta=gp[k];	  	  Mm->matstiff (d,ipp);	  	  fillv (0.0,sig);	  for (jj=0;jj<nb;jj++){	    allocv (ncomp[jj],eps);	    allocm (ncomp[ii],ncomp[jj],dd);	    	    if (Mp->strainaver==0)	      Mm->givestrain (lcid,ipp,cncomp[jj],ncomp[jj],eps);	    if (Mp->strainaver==1)	      appstrain (lcid,eid,xi,eta,zeta,cncomp[jj],ncomp[jj],eps);	    	    /*	    if (Mt->elements[eid].presctemp==1){	      allocv (tncomp,epstt);	      tempstrains (lcid,eid,ipp,xi,eta,zeta,epstt);	      allocv (ncomp[jj],epst);	      extract (epst,epstt,cncomp[jj],ncomp[jj]);	      subv (eps,epst,eps);	      destrv (epst);  destrv (epstt);	    }	    */	    dmatblock (ii,jj,d,dd);	    mxv (dd,eps,auxsig);	    addv (auxsig,sig,sig);	    destrm (dd);  destrv (eps);	  }	  	  natcoord[0]=xi;  natcoord[1]=eta;  natcoord[2]=zeta;	  matassem_lsm (lsm,natcoord);	  rhsassem_lsm (rhs,natcoord,sig);	  ipp++;	}      }    }        solve_lsm (lsm,lhs,rhs,Mp->zero,4,ncomp[ii]);    Mt->stress_nodal_values (nodes,nxi,neta,nzeta,lhs,3,cncomp[ii],ncomp[ii],lcid);            delete [] lhs;  delete [] rhs;    destrv (auxsig);  destrv (sig);  destrv (eps);  destrv (w);  destrv (gp);  }    delete [] lsm;}void linhex::elem_stresses (double **stra,double **stre,long lcid,long eid,long ri,long ci){  long i,j,k,ii,jj,ipp;  double xi,eta,zeta,*lsm,*lhs,*rhs;  vector nxi(nne),neta(nne),nzeta(nne),r,gp,w,eps,epst,epstt,sig,auxsig,natcoord(3);  matrix d(tncomp,tncomp),dd;  lsm = new double [16];  nodecoord (nxi,neta,nzeta);    for (ii=0;ii<nb;ii++){    allocv (intordsm[ii][ii],gp);    allocv (intordsm[ii][ii],w);    allocv (ncomp[ii],sig);    allocv (ncomp[ii],auxsig);    lhs = new double [ncomp[ii]*4];    rhs = new double [ncomp[ii]*4];    gauss_points (gp.a,w.a,intordsm[ii][ii]);        nullv (lsm,16);    nullv (rhs,ncomp[ii]*4);        ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];        for (i=0;i<intordsm[ii][ii];i++){      xi=gp[i];      for (j=0;j<intordsm[ii][ii];j++){	eta=gp[j];	for (k=0;k<intordsm[ii][ii];k++){	  zeta=gp[k];	  	  Mm->matstiff (d,ipp);	  	  fillv (0.0,sig);	  for (jj=0;jj<nb;jj++){	    allocv (ncomp[jj],eps);	    allocm (ncomp[ii],ncomp[jj],dd);	    	    if (Mp->strainaver==0)	      appval (xi,eta,zeta,cncomp[jj],ncomp[jj],eps,stra);	    if (Mp->strainaver==1)	      appstrain (lcid,eid,xi,eta,zeta,cncomp[jj],ncomp[jj],eps);	    	    /*	    if (Mt->elements[eid].presctemp==1){	      allocv (tncomp,epstt);	      tempstrains (lcid,eid,ipp,xi,eta,zeta,epstt);	      allocv (ncomp[jj],epst);	      extract (epst,epstt,cncomp[jj],ncomp[jj]);	      subv (eps,epst,eps);	      destrv (epst);  destrv (epstt);	    }	    */	    dmatblock (ii,jj,d,dd);	    mxv (dd,eps,auxsig);	    addv (auxsig,sig,sig);	    destrm (dd);  destrv (eps);	  }	  	  natcoord[0]=xi;  natcoord[1]=eta;  natcoord[2]=zeta;	  matassem_lsm (lsm,natcoord);	  rhsassem_lsm (rhs,natcoord,sig);	  ipp++;	}      }    }            solve_lsm (lsm,lhs,rhs,Mp->zero,4,ncomp[ii]);    nodal_values (stre,nxi,neta,nzeta,lhs,3,cncomp[ii],ncomp[ii]);    delete [] lhs;  delete [] rhs;    destrv (auxsig);  destrv (sig);  destrv (eps);  destrv (w);  destrv (gp);  }  delete [] lsm;}/**   function computes stresses in arbitrary point on element      @param lcid - load case id   @param eid - element id   @param xi, eta, zeta - natural coordinates of the point   @param fi,li - first and last indices   @param sig - array containing stresses      11.5.2002*/void linhex::appstress (long lcid,long eid,double xi,double eta,double zeta,long fi,long ncomp,vector &sig){  long i,j,k;  ivector nodes(nne);  vector nodval(nne);    if (ncomp != sig.n){    fprintf (stderr,"\n\n wrong interval of indices in function stress (%s, line %d).\n",__FILE__,__LINE__);    abort ();  }  Mt->give_elemnodes (eid,nodes);  k=0;  for (i=fi;i<fi+ncomp;i++){    for (j=0;j<nne;j++){      nodval[j]=Mt->nodes[nodes[j]].stress[lcid*tncomp+i];    }    sig[k]=approx (xi,eta,zeta,nodval);    k++;  }}/**   function computes stresses in all integration points      @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices      10.5.2002*/void linhex::allip_stresses (double **stre,long lcid,long eid,long ri,long ci){  long i,j,k,ii,jj,ipp;  double xi,eta,zeta;  vector sig(tncomp),gp,w;    for (ii=0;ii<nb;ii++){    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;      allocv (intordsm[ii][jj],gp);      allocv (intordsm[ii][jj],w);      gauss_points (gp.a,w.a,intordsm[ii][jj]);      ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];            for (i=0;i<intordsm[ii][jj];i++){	xi=gp[i];	for (j=0;j<intordsm[ii][jj];j++){	  eta=gp[j];	  for (k=0;k<intordsm[ii][jj];k++){	    zeta=gp[k];	    	    if (Mp->stressaver==0)	      appval (xi,eta,zeta,0,tncomp,sig,stre);	    if (Mp->stressaver==1)	      appstress (lcid,eid,xi,eta,zeta,0,tncomp,sig);	    Mm->storestress (lcid,ipp,sig);	    ipp++;	  }	}      }      destrv (w);  destrv (gp);    }  }}void linhex::stresses (long lcid,long eid,long ri,long ci){  long i,naep,ncp,sid;  double **stra,**stre;  vector coord,sig;    if (Mp->stressaver==0){    stra = new double* [nne];    stre = new double* [nne];    for (i=0;i<nne;i++){      stra[i] = new double [tncomp];      stre[i] = new double [tncomp];    }    elem_strains (stra,lcid,eid,ri,ci);    elem_stresses (stra,stre,lcid,eid,ri,ci);  }  switch (Mm->stre.tape[eid]){  case nowhere:{    break;  }  case intpts:{    allip_stresses (stre,lcid,eid,ri,ci);    break;  }  case enodes:{    break;  }  case userdefined:{    //  number of auxiliary element points    naep = Mm->stre.give_naep (eid);    ncp = Mm->stre.give_ncomp (eid);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -