⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 elemparticle.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
📖 第 1 页 / 共 2 页
字号:
      sm[j*2+1][j*2+0]+=k[1][0];      sm[j*2+1][j*2+1]+=k[1][1];      stiffmat_2d_kij (ipp,k,s);      sm[i*2+0][j*2+0]+=k[0][0];      sm[i*2+0][j*2+1]+=k[0][1];      sm[i*2+1][j*2+0]+=k[1][0];      sm[i*2+1][j*2+1]+=k[1][1];      sm[j*2+0][i*2+0]+=k[0][0];      sm[j*2+0][i*2+1]+=k[0][1];      sm[j*2+1][i*2+0]+=k[1][0];      sm[j*2+1][i*2+1]+=k[1][1];    }  }  //fprintf (Out,"\nsm [0][0]  %le\n",sm[0][0]);    /*  if (Mp->phase==1){    for (i=0;i<nne;i++){      for (j=0;j<nne;j++){	sm[i][j]*=-1.0;      }      if (fabs(sm[i][i])<1.0e-5){	if (sm[i][i]<0.0)	  sm[i][i]=-1.0e-5;	if (sm[i][i]>0.0)	  sm[i][i]=1.0e-5;      }    }      }  */  fprintf (Out,"\n\n STIFFNESS MATRIX");  for (i=0;i<nne;i++){    fprintf (Out,"\n");    for (j=0;j<nne;j++){      fprintf (Out,"  %le",sm[i][j]);    }  }  fprintf (Out,"\n");    }/**   function computes diagonal stiffness matrix block in 3D      @param ipp - integration point id   @param k - stiffness %matrix (diagonal submatrices)   @param s - direction %vector      JK, 26.9.2005*/void elemparticle::stiffmat_3d_kii (long ipp,matrix &k,vector &s){  double f,g,r;    //  norm of the direction vector  sizev (s,r);    //  first derivative of particle potential with respect to particle distance  f = Mm->give_first_derivative (ipp,r);    //  second derivative of particle potential with respect to particle distance  g = Mm->give_second_derivative (ipp,r);    //  part of the stiffness matrix  k[0][0] = g*s[0]*s[0]/r/r + f*(1.0/r-s[0]*s[0]/r/r/r);  k[0][1] = g*s[0]*s[1]/r/r - f*s[0]*s[1]/r/r/r;  k[0][2] = g*s[0]*s[2]/r/r - f*s[0]*s[2]/r/r/r;  k[1][0] = k[0][1];  k[1][1] = g*s[1]*s[1]/r/r + f*(1.0/r-s[1]*s[1]/r/r/r);  k[1][2] = g*s[1]*s[2]/r/r - f*s[1]*s[2]/r/r/r;  k[2][0] = k[0][2];  k[2][1] = k[1][2];  k[2][2] = g*s[2]*s[2]/r/r + f*(1.0/r-s[2]*s[2]/r/r/r);}/**   function computes off-diagonal stiffness matrix block in 3D      @param ipp - integration point id   @param k - stiffness %matrix (offdiagonal submatrices)   @param s - direction %vector      JK, 26.9.2005*/void elemparticle::stiffmat_3d_kij (long ipp,matrix &k,vector &s){  double f,g,r;    //  norm of the direction vector  sizev (s,r);    //  first derivative of particle potential with respect to particle distance  f = Mm->give_first_derivative (ipp,r);    //  second derivative of particle potential with respect to particle distance  g = Mm->give_second_derivative (ipp,r);    //  part of the stiffness matrix  k[0][0] = -1.0*g*s[0]*s[0]/r/r + f*(-1.0/r+s[0]*s[0]/r/r/r);  k[0][1] = -1.0*g*s[0]*s[1]/r/r + f*s[0]*s[1]/r/r/r;  k[0][2] = -1.0*g*s[0]*s[2]/r/r + f*s[0]*s[2]/r/r/r;  k[1][0] = k[0][1];  k[1][1] = -1.0*g*s[1]*s[1]/r/r + f*(-1.0/r+s[1]*s[1]/r/r/r);  k[1][2] = -1.0*g*s[1]*s[2]/r/r + f*s[1]*s[2]/r/r/r;  k[2][0] = k[0][2];  k[2][1] = k[1][2];  k[2][2] = -1.0*g*s[2]*s[2]/r/r + f*(-1.0/r+s[2]*s[2]/r/r/r);}/**   function computes stiffness %matrix of cell of particles in 3D      @param eid - element id   @param sm - stiffness %matrix      JK, 26.9.2005*/void elemparticle::stiffness_matrix_3d (long eid,matrix &sm){  long i,j,ipp,ii,jj;  ivector nodes(nne);  vector x(nne),y(nne),u(nne),v(nne),s(2);  matrix k(3,3);    //  node numbers  Mt->give_elemnodes (eid,nodes);  //  node coordinates  Mt->give_node_coord2d (x,y,eid);  //  node displacements  //if (Mp->phase==1){  Mt->give_noddispl_2d (nodes,u,v);  //}    ipp = Mt->elements[eid].ipp[0][0];    fillm (0.0,sm);    for (i=0;i<nne;i++){    for (j=i+1;j<nne;j++){      direction_vector_2d (eid,i,j,s,x,y,u,v);            stiffmat_2d_kii (ipp,k,s);      for (ii=0; ii<3; ii++)      {        for(jj=0; jj<3; jj++)	{	  sm[i*3+ii][i*3+jj] += k[ii][jj];	  sm[j*3+ii][j*3+jj] += k[ii][jj];	}      }      stiffmat_2d_kij (ipp,k,s);      for (ii=0; ii<3; ii++)      {        for(jj=0; jj<3; jj++)	{	  sm[i*3+ii][j*3+jj] += k[ii][jj];	  sm[j*3+ii][i*3+jj] += k[ii][jj];	}      }    }  }  fprintf (Out,"\n\n STIFFNESS MATRIX");  for (i=0;i<nne;i++){    fprintf (Out,"\n");    for (j=0;j<nne;j++){      fprintf (Out,"  %le",sm[i][j]);    }  }  fprintf (Out,"\n");    }/**   */void elemparticle::res_stiffness_matrix (long eid,matrix &sm){  switch (dim){  case 1:{    stiffness_matrix_1d (eid,sm);    break;  }  case 2:{    stiffness_matrix_2d (eid,sm);    break;  }  case 3:{    stiffness_matrix_3d (eid,sm);    break;  }  default:{    fprintf (stderr,"\n\n unknown dimension of problem is required in function res_stiffness_matrix (file %s, line %d).\n",__FILE__,__LINE__);  }  }}void elemparticle::forces_1d (long ipp,vector &fij,vector &s){  double r,d;    //  norm of the direction vector  sizev (s,r);    //  first derivative of particle potential with respect to particle distance  d = Mm->give_first_derivative (ipp,r);    fij[0] = -s[0]*d/r;}void elemparticle::inter_forces_1d (long eid,vector &f){  long i,j,ipp;  ivector nodes(nne);  vector x(nne),u(nne),s(1),fij(1);    //  node numbers  Mt->give_elemnodes (eid,nodes);  //  node coordinates  Mt->give_node_coord1d (x,eid);  //  node displacements  Mt->give_noddispl_1d (nodes,u);  ipp = Mt->elements[eid].ipp[0][0];    fprintf (Out,"\n u   %le   %le\n",u[0],u[1]);  fillv (0.0,f);  for (i=0;i<nne;i++){    for (j=i;j<nne;j++){      if (i != j){	direction_vector_1d (eid,i,j,s,x,u);	forces_1d (ipp,fij,s);		fprintf (Out,"\n s  %le   fij  %le\n",s[0],fij[0]);	f[i]+=fij[0];	f[j]-=fij[0];      }    }  }  copyv(f.a, Mm->ip[ipp].stress, f.n);}void elemparticle::forces_2d (long ipp,vector &fij,vector &s){  double r,d;    //  norm of the direction vector  sizev (s,r);  //  first derivative of particle potential with respect to particle distance  d = Mm->give_first_derivative (ipp,r);    fij[0] = -s[0]*d/r;  fij[1] = -s[1]*d/r;}void elemparticle::inter_forces_2d (long eid,vector &f){  long i,j,ipp,ii;  ivector nodes(nne);  vector x(nne),y(nne),u(nne),v(nne),s(2),fij(2);    //  node numbers  Mt->give_elemnodes (eid,nodes);  //  node coordinates  Mt->give_node_coord2d (x,y,eid);  //  node displacements  Mt->give_noddispl_2d (nodes,u, v);  // integration point  ipp = Mt->elements[eid].ipp[0][0];    fillv (0.0,f);  for (i=0;i<nne;i++)  {    for (j=i+1;j<nne;j++)    {      direction_vector_2d (eid,i,j,s,x,y,u,v);      forces_2d (ipp,fij,s);      for(ii=0; ii<2; ii++) // loop over directions of forces      {        f[i*2+ii]+=fij[ii];        f[j*2+ii]-=fij[ii];      }    }  }}void elemparticle::forces_3d (long ipp,vector &fij,vector &s){  double r,d;    //  norm of the direction vector  sizev (s,r);  //  first derivative of particle potential with respect to particle distance  d = Mm->give_first_derivative (ipp,r);    fij[0] = -s[0]*d/r;  fij[1] = -s[1]*d/r;  fij[2] = -s[2]*d/r;}void elemparticle::inter_forces_3d (long eid,vector &f){  long i,j,ii,ipp;  ivector nodes(nne);  vector x(nne),y(nne),z(nne),u(nne),v(nne),w(nne),s(3),fij(3);    //  node numbers  Mt->give_elemnodes (eid,nodes);  //  node coordinates  Mt->give_node_coord3d (x,y,z,eid);  //  node displacements  Mt->give_noddispl_3d (nodes,u,v,w);  // integration point  ipp = Mt->elements[eid].ipp[0][0];    fillv (0.0,f);  for (i=0;i<nne;i++)  {    for (j=i+1;j<nne;j++)    {      direction_vector_3d (eid,i,j,s,x,y,z,u,v,w);      forces_3d (ipp,fij,s);      for(ii=0; ii<3; ii++) // loop over directions of forces      {        f[i*3+ii]+=fij[ii];        f[j*3+ii]-=fij[ii];      }    }  }}void elemparticle::res_internal_forces (long eid,vector &ifor){  switch (dim){  case 1:{    inter_forces_1d (eid,ifor);    break;  }  case 2:{    inter_forces_2d (eid,ifor);    break;  }  case 3:{    inter_forces_3d (eid,ifor);    break;  }  default:{    fprintf (stderr,"\n\n unknown dimension of problem is required in function res_stiffness_matrix (file %s, line %d).\n",__FILE__,__LINE__);  }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -