📄 axisymlt.cpp
字号:
/** function computes stresses in arbitrary point on element @param lcid - load case id @param eid - element id @param areacoord - area coordinates of the point @param fi,li - first and last indices @param sig - array containing stresses 11.5.2002*/void axisymlt::appstress (long lcid,long eid,double xi,double eta,long fi,long ncomp,vector &sig){ long i,j,k; ivector nodes; vector areacoord(3),nodval; if (ncomp != sig.n){ fprintf (stderr,"\n\n wrong interval of indices in function stress (%s, line %d).\n",__FILE__,__LINE__); abort (); } areacoord[0]=xi; areacoord[1]=eta; areacoord[2]=1.0-areacoord[0]-areacoord[1]; allocv (nne,nodes); allocv (nne,nodval); Mt->give_elemnodes (eid,nodes); k=0; for (i=fi;i<fi+ncomp;i++){ for (j=0;j<nne;j++){ nodval[j]=Mt->nodes[nodes[j]].stress[lcid*tncomp+i]; } sig[k]=approx (areacoord,nodval); k++; } destrv (nodes); destrv (nodval);}void axisymlt::stresses (long lcid,long eid,long ri,long ci){ vector coord,sig; switch (Mm->stre.tape[eid]){ case nowhere:{ break; } case intpts:{ //allip_stresses (stre,lcid,eid,ri,ci); break; } case enodes:{ nod_stresses_ip (lcid,eid); break; } case userdefined:{ /* // number of auxiliary element points naep = Mm->stre.give_naep (eid); ncp = Mm->stre.give_ncomp (eid); sid = Mm->stre.give_sid (eid); allocv (ncp,sig); allocv (2,coord); for (i=0;i<naep;i++){ Mm->stre.give_aepcoord (sid,i,coord); if (Mp->stressaver==0) appval (coord[0],coord[1],0,ncp,sig,stre); if (Mp->stressaver==1) appstress (lcid,eid,coord[0],coord[1],0,ncp,sig); Mm->stre.storevalues(lcid,eid,i,sig); } destrv (sig); destrv (coord); */ break; } default:{ fprintf (stderr,"\n\n unknown stress point is required in function planeelemlq::stresses (%s, line %d).\n",__FILE__,__LINE__); } }}/** function computes eqother components at nodes of element @param lcid - load case id @param eid - element id 10.5.2002*/void axisymlt::nod_eqother_ip (long lcid,long eid){ long i,j,ncompo; ivector ipnum(nne),nod(nne); vector eqother; // numbers of integration points closest to nodes nodipnum (eid,ipnum); // node numbers of the element Mt->give_elemnodes (eid,nod); for (i=0;i<nne;i++){ ncompo = Mm->givencompeqother (ipnum[i],0); allocv (ncompo,eqother); Mm->giveeqother (ipnum[i],0,ncompo,eqother.a); // storage of eqother to the node j=nod[i]; Mt->nodes[j].storeother (lcid,0,ncompo,eqother); destrv (eqother); }}/** function computes load matrix of the triangular axisymmetric finite element with linear approximation functions load vector is obtained after premultiplying load matrix by nodal load values @param eid - number of element @param lm - load matrix 25.7.2001*/void axisymlt::load_matrix (long eid,matrix &lm){ long i; double jac,det; ivector nodes(nne); vector x(nne),y(nne),w(intordmm),gp1(intordmm),gp2(intordmm); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); gauss_points_tr (gp1.a,gp2.a,w.a,intordmm); // det is equal to double area of the element det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]); fillm (0.0,lm); for (i=0;i<intordmm;i++){ bf_matrix (n,gp1[i],gp2[i]); // zkontrolovat deleni dvema jac=w[i]*det; nnj (lm.a,n.a,jac,n.m,n.n); } }void axisymlt::res_eigstrain_forces (long lcid,long eid,vector &nfor){ vector x(nne),y(nne); Mt->give_node_coord2d (x,y,eid); eigstrain_forces (lcid,eid,0,0,nfor,x,y);}/** function computes nodal forces caused by temperature changes @param eid - element id @param ri,ci - row and column indices @param nfor - array containing nodal forces @param x,y - nodal coordinates 22.12.2002, JK*/void axisymlt::eigstrain_forces (long lcid,long eid,long ri,long ci,vector &nfor,vector &x,vector &y){ long k,ipp; double xi,eta,det; vector eigstr(tncomp),sig(tncomp),contr(ndofe),areacoord(3); matrix d(tncomp,tncomp),gm(tncomp,ndofe); // det is equal to double area of the element det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]); fillv (0.0,nfor); ipp=Mt->elements[eid].ipp[ri][ci]; xi=1.0/3.0; eta=1.0/3.0; areacoord[0]=1.0/3.0; areacoord[1]=1.0/3.0; areacoord[2]=1.0/3.0; Mm->giveeigstrain (ipp,cncomp[0],ncomp[0],eigstr); Mm->matstiff (d,ipp); mxv (d,eigstr,sig); geom_matrix (gm,areacoord,x,y); mtxv (gm,sig,contr); cmulv (det/2.0,contr); for (k=0;k<contr.n;k++){ nfor[k]+=contr[k]; }}/** function computes internal forces @param lcid - number of load case @param eid - element id @param ri,ci - row and column indices @param ifor - vector of internal forces 17.8.2001*/void axisymlt::internal_forces (long lcid,long eid,long ri,long ci,vector &ifor){ long i,k,ii,ipp; double rad,det; ivector nodes(nne),cn(ndofe); vector x(nne),y(nne),w,gp1,gp2,areacoord(3); vector r(ndofe),eps(tncomp),sig(tncomp),contr(ndofe),auxcontr(ndofe); matrix gm(tncomp,ndofe); Mt->give_node_coord2d (x,y,eid); fillv (0.0,ifor); // det is equal to double area of the element det = (x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]); for (ii=0;ii<nb;ii++){ if (intordsm[ii][ii]==0) continue; allocv (intordsm[ii][ii],gp1); allocv (intordsm[ii][ii],gp2); allocv (intordsm[ii][ii],w); //allocm (ncomp[ii],ndofe,gm); //allocv (ncomp[ii],sig); gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ii][ii]; for (i=0;i<intordsm[ii][ii];i++){ areacoord[0]=gp1[i]; areacoord[1]=gp2[i]; areacoord[2]=1.0-areacoord[0]-areacoord[1]; Mm->computenlstresses (ipp); Mm->givestress (lcid,ipp,sig); geom_matrix (gm,areacoord,x,y); mtxv (gm,sig,contr); rad = approx (areacoord,x); cmulv (rad*w[i]*det,contr); for (k=0;k<contr.n;k++){ ifor[k]+=contr[k]; } ipp++; } //destrv (sig); destrm (gm); destrv (w); destrv (gp2); destrv (gp1); }}void axisymlt::res_internal_forces (long lcid,long eid,vector &ifor){ internal_forces (lcid,eid,0,0,ifor);}void axisymlt::ipcoord (long eid,long sip,long ipp,vector &coord) // function returns coordinates of integration points // eid - element id // ipp - integration point pointer // coord - vector of coordinates // 19.1.2002{ /* long i,ii; vector x(nne),y(nne),areacoord(3),w(intordsm),gp1(intordsm),gp2(intordsm); gauss_points_tr (gp1.a,gp2.a,w.a,intordsm); Mt->give_node_coord2d (x,y,eid); ii=Mt->elements[eid].ipp[sip]; for (i=0;i<intordsm;i++){ areacoord[0]=gp1[i]; areacoord[1]=gp2[i]; areacoord[2]=1.0-areacoord[0]-areacoord[1]; if (ii==ipp){ coord[0]=approx (areacoord,x); coord[1]=approx (areacoord,y); coord[2]=0.0; } ii++; } */}void axisymlt::nodeforces (long eid,long *le,double *nv,vector &nf){ /* long i; double ww,jac; vector x(nne),y(nne),areacoord(3),gp(intordb),w(intordb),av(ndofe),v(ndofe); matrix n(napfun,ndofe),am(ndofe,ndofe); Mt->give_node_coord2d (x,y,eid); gauss_points (gp.a,w.a,intordb); if (le[0]==1){ fillm (0.0,am); areacoord[0]=0.0; for (i=0;i<intordb;i++){ areacoord[1]=(1.0+gp[i])/2.0; areacoord[2]=1.0-areacoord[1]; ww=w[i]; bf_matrix (n,areacoord); jac1d_2d (jac,x,y,areacoord[1],0); jac*=ww; nnj (am.a,n.a,jac,n.m,n.n); } fillv (0.0,av); av[2]=nv[4]; av[3]=nv[5]; av[4]=nv[6]; av[5]=nv[7]; mxv (am,av,v); addv (nf,v,nf); } if (le[1]==1){ fillm (0.0,am); areacoord[1]=0.0; for (i=0;i<intordb;i++){ areacoord[0]=(1.0+gp[i])/2.0; areacoord[2]=1.0-areacoord[0]; ww=w[i]; bf_matrix (n,areacoord); jac1d_2d (jac,x,y,areacoord[0],1); jac*=ww; nnj (am.a,n.a,jac,n.m,n.n); } fillv (0.0,av); av[0]=nv[10]; av[1]=nv[11]; av[4]=nv[8]; av[5]=nv[9]; mxv (am,av,v); addv (nf,v,nf); } if (le[2]==1){ fillm (0.0,am); areacoord[2]=0.0; for (i=0;i<intordb;i++){ areacoord[0]=(1.0+gp[i])/2.0; areacoord[1]=1.0-areacoord[0]; ww=w[i]; bf_matrix (n,areacoord); jac1d_2d (jac,x,y,areacoord[0],2); jac*=ww; nnj (am.a,n.a,jac,n.m,n.n); } fillv (0.0,av); av[0]=nv[0]; av[1]=nv[1]; av[2]=nv[2]; av[3]=nv[3]; mxv (am,av,v); addv (nf,v,nf); } */}void axisymlt::inicipval(long eid, long ri, long ci, matrix &nodval, inictype *ictn){ long i, j, k, ipp; long ii, jj, nv = nodval.n; long nstra, ncompstr, ncompeqother; double xi, eta, ipval; vector w, gp1, gp2, anv(nne); long idstra, idstre, idoth, idic; nstra = idstra = idstre = idoth = idic = 0; for (j = 0; j < nv; j++) // for all initial values { for(i = 0; i < nne; i++) anv[i] = nodval[i][j]; for (ii = 0; ii < nb; ii++) { for (jj = 0; jj < nb; jj++) { ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; if (intordsm[ii][jj] == 0) continue; allocv (intordsm[ii][jj],gp1); allocv (intordsm[ii][jj],gp2); allocv (intordsm[ii][jj],w); gauss_points_tr (gp1.a, gp2.a, w.a, intordsm[ii][jj]); for (k = 0; k < intordsm[ii][jj]; k++) { xi=gp1[k]; eta=gp2[k]; // value in integration point ipval = approx_nat(xi, eta, anv); ncompstr = Mm->ip[ipp].ncompstr; ncompeqother = Mm->ip[ipp].ncompeqother; if ((ictn[0] & inistrain) && (j < ncompstr)) { Mm->ip[ipp].strain[j] += ipval; ipp++; continue; } if ((ictn[0] & inistress) && (j < nstra + ncompstr)) { Mm->ip[ipp].stress[j] += ipval; ipp++; continue; } if ((ictn[0] & iniother) && (j < nstra+ncompeqother)) { Mm->ip[ipp].eqother[idoth] += ipval; ipp++; continue; } if ((ictn[0] & inicond) && (j < nv)) { if (Mm->ic[ipp] == NULL) { Mm->ic[ipp] = new double[nv-j]; memset(Mm->ic[ipp], 0, sizeof(*Mm->ic[ipp])*(nv-j)); } Mm->ic[ipp][idic] += ipval; ipp++; continue; } ipp++; } destrv(gp1); destrv (gp2); destrv (w); } } ipp=Mt->elements[eid].ipp[ri][ci]; ncompstr = Mm->ip[ipp].ncompstr; ncompeqother = Mm->ip[ipp].ncompeqother; if ((ictn[0] & inistrain) && (j < ncompstr)) { nstra++; idstra++; } if ((ictn[0] & inistress) && (j < nstra + ncompstr)) { nstra++; idstre++; } if ((ictn[0] & iniother) && (j < nstra + ncompeqother)) { nstra++; idoth++; } if ((ictn[0] & inicond) && (j < nv)) idic++; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -