📄 dkt.cpp
字号:
}void dktelem::allip_strains (double **stra,long lcid,long eid,long ri,long ci){ long i,ipp; vector l(3); vector eps(ncomp[0]),gp1(intordsm[0][0]),gp2(intordsm[0][0]),w(intordsm[0][0]); gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[0][0]); ipp=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[0][0];i++){ l[0]=gp1[i]; l[1]=gp2[i]; l[2]=1.0-l[0]-l[1]; if (Mp->strainaver==0) appval (l,0,tncomp,eps,stra); if (Mp->strainaver==1) appstrain (lcid,eid,l,0,tncomp,eps); Mm->storestrain (lcid,ipp,eps); ipp++; }}void dktelem::strains (long lcid,long eid,long ri,long ci){ long i,naep,ncp,sid; double **stra; vector coord,eps,l(3); if (Mp->strainaver==0){ stra = new double* [nne]; for (i=0;i<nne;i++){ stra[i] = new double [tncomp]; } elem_strains (stra,lcid,eid,ri,ci); } switch (Mm->stra.tape[eid]){ case nowhere:{ break; } case intpts:{ allip_strains (stra,lcid,eid,ri,ci); break; } case enodes:{ break; } case userdefined:{ // number of auxiliary element points naep = Mm->stra.give_naep (eid); ncp = Mm->stra.give_ncomp (eid); sid = Mm->stra.give_sid (eid); allocv (ncp,eps); allocv (2,coord); for (i=0;i<naep;i++){ Mm->stra.give_aepcoord (sid,i,coord); l[0]=coord[0];l[1]=coord[1];l[2]=1-coord[1]-coord[2]; if (Mp->strainaver==0) appval (l,0,ncp,eps,stra); if (Mp->strainaver==1) appstrain (lcid,eid,l,0,ncp,eps); Mm->stra.storevalues(lcid,eid,i,eps); } destrv (eps); destrv (coord); break; } default:{ fprintf (stderr,"\n\n unknown strain point is required in function planeelemlt::strains (%s, line %d).\n",__FILE__,__LINE__); } } if (Mp->strainaver==0){ for (i=0;i<nne;i++){ delete [] stra[i]; } delete [] stra; }}/** function computes stresses DKT*/void dktelem::res_allip_stresses (long lcid,long eid){ // blocks of stress components at integration points mainip_stresses (lcid,eid,0,0);}void dktelem::mainip_stresses (long lcid,long eid,long ri,long ci){ long i,ipp,ij; double thick; ivector nodes(nne); vector l(3),t(nne); vector eps(ncomp[0]),sig(ncomp[0]),auxsig(ncomp[0]),gp1(intordsm[0][0]),gp2(intordsm[0][0]),w(intordsm[0][0]); matrix d(5,5),dd(ncomp[0],ncomp[0]); Mt->give_elemnodes (eid,nodes); Mc->give_thickness (eid,nodes,t); gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[0][0]); ipp=Mt->elements[eid].ipp[ri][ci]; fprintf (Out,"\n\n stress"); fprintf (Out,"\n\n prvek cislo %ld",eid); for (i=0;i<intordsm[0][0];i++){ Mm->matstiff (d,ipp); l[0]=gp1[i]; l[1]=gp2[i];l[2]=1.0-l[0]-l[1]; fillv (0.0,sig);// if (Mp->strainaver==0) Mm->givestrain (lcid,ipp,cncomp[0],ncomp[0],eps);// if (Mp->strainaver==1)// appstrain (lcid,eid,l,cncomp[0],ncomp[0],eps); thick = t[0]*l[0]+t[1]*l[1]+t[2]*l[2]; dbmat (d,dd,thick); mxv (dd,eps,auxsig); addv (auxsig,sig,sig); Mm->storestress (lcid,ipp,cncomp[0],ncomp[0],sig); fprintf (Out,"\n"); for (ij=0;ij<ncomp[0];ij++){ fprintf (Out,"%20.10e",sig[ij]); } ipp++; } }void dktelem::nod_stresses (long lcid,long eid,long ri,long ci){ long i,ipp; double thick,*lsm,*lhs,*rhs; vector nxi(nne),neta(nne),r,natcoord(2),l(3),t(nne); vector eps(ncomp[0]),sig(ncomp[0]),auxsig(ncomp[0]),gp1(intordsm[0][0]),gp2(intordsm[0][0]),w(intordsm[0][0]); ivector nodes(nne); matrix gm,d(5,5),dd(ncomp[0],ncomp[0]); lsm = new double [9]; Mt->give_elemnodes (eid,nodes); Mc->give_thickness (eid,nodes,t); nodecoord (nxi,neta); lhs = new double [ncomp[0]*3]; rhs = new double [ncomp[0]*3]; gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[0][0]); nullv (lsm,9); nullv (rhs,ncomp[0]*3); ipp=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[0][0];i++){ Mm->matstiff (d,ipp); l[0]=gp1[i]; l[1]=gp2[i];l[2]=1.0-l[0]-l[1]; thick = t[0]*l[0]+t[1]*l[1]+t[2]*l[2]; fillv (0.0,sig); if (Mp->strainaver==0) Mm->givestrain (lcid,ipp,cncomp[0],ncomp[0],eps); if (Mp->strainaver==1) appstrain (lcid,eid,l,cncomp[0],ncomp[0],eps); thick = t[0]*l[0]+t[1]*l[1]+t[2]*l[2]; dbmat (d,dd,thick); mxv (dd,eps,auxsig); addv (auxsig,sig,sig); natcoord[0]=gp1[i]; natcoord[1]=gp2[i]; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,sig); ipp++; } solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[0]); Mt->stress_nodal_values (nodes,nxi,neta,nxi,lhs,2,cncomp[0],ncomp[0],lcid); delete [] lhs; delete [] rhs; delete [] lsm;}void dktelem::elem_stresses (double **stra,double **stre,long lcid,long eid,long ri,long ci){ long i,ipp; double thick,*lsm,*lhs,*rhs; vector nxi(nne),neta(nne),r,natcoord(2),l(3),t(nne); vector eps(ncomp[0]),sig(ncomp[0]),auxsig(ncomp[0]),gp1(intordsm[0][0]),gp2(intordsm[0][0]),w(intordsm[0][0]); ivector nodes(nne); matrix gm,d(5,5),dd(ncomp[0],ncomp[0]); lsm = new double [9]; Mt->give_elemnodes (eid,nodes); Mc->give_thickness (eid,nodes,t); nodecoord (nxi,neta); lhs = new double [ncomp[0]*3]; rhs = new double [ncomp[0]*3]; gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[0][0]); nullv (lsm,9); nullv (rhs,ncomp[0]*3); ipp=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[0][0];i++){ Mm->matstiff (d,ipp); l[0]=gp1[i]; l[1]=gp2[i];l[2]=1.0-l[0]-l[1]; thick = t[0]*l[0]+t[1]*l[1]+t[2]*l[2]; fillv (0.0,sig); if (Mp->strainaver==0) appval (l,cncomp[0],ncomp[0],eps,stra); if (Mp->strainaver==1) appstrain (lcid,eid,l,cncomp[0],ncomp[0],eps); thick = t[0]*l[0]+t[1]*l[1]+t[2]*l[2]; dbmat (d,dd,thick); mxv (dd,eps,auxsig); addv (auxsig,sig,sig); natcoord[0]=gp1[i]; natcoord[1]=gp2[i]; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,sig); ipp++; } solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[0]); Mt->stress_nodal_values (nodes,nxi,neta,nxi,lhs,2,cncomp[0],ncomp[0],lcid); delete [] lhs; delete [] rhs; delete [] lsm;}void dktelem::appstress (long lcid,long eid,vector &l,long fi,long ncomp,vector &sig){ long i,j,k; ivector nodes(nne); vector nodval(nne); if (ncomp != sig.n){ fprintf (stderr,"\n\n wrong interval of indices in function stress (%s, line %d).\n",__FILE__,__LINE__); abort (); } Mt->give_elemnodes (eid,nodes); k=0; for (i=fi;i<fi+ncomp;i++){ for (j=0;j<nne;j++){ nodval[j]=Mt->nodes[nodes[j]].stress[lcid*tncomp+i]; } sig[k] = nodval[0]*l[0]+nodval[1]*l[1]+nodval[2]*l[2]; k++; } }void dktelem::allip_stresses (double **stre,long lcid,long eid,long ri,long ci){ long i,ipp; vector sig(ncomp[0]),l(3),gp1(intordsm[0][0]),gp2(intordsm[0][0]),w(intordsm[0][0]); gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[0][0]); ipp=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[0][0];i++){ l[0]=gp1[i]; l[1]=gp2[i];l[2]=1.0-l[0]-l[1]; if (Mp->stressaver==0) appval (l,cncomp[0],ncomp[0],sig,stre); if (Mp->stressaver==1) appstress (lcid,eid,l,0,tncomp,sig); Mm->storestress (lcid,ipp,sig); ipp++; }}void dktelem::stresses (long lcid,long eid,long ri, long ci){ long i,naep,ncp,sid; double **stra,**stre; vector coord,sig,l(3); if (Mp->stressaver==0){ stra = new double* [nne]; stre = new double* [nne]; for (i=0;i<nne;i++){ stra[i] = new double [tncomp]; stre[i] = new double [tncomp]; } elem_strains (stra,lcid,eid,ri,ci); elem_stresses (stra,stre,lcid,eid,ri,ci); } switch (Mm->stre.tape[eid]){ case nowhere:{ break; } case intpts:{ allip_stresses (stre,lcid,eid,ri,ci); break; } case enodes:{ break; } case userdefined:{ // number of auxiliary element point naep = Mm->stre.give_naep (eid); ncp = Mm->stre.give_ncomp (eid); sid = Mm->stre.give_sid (eid); allocv (ncp,sig); allocv (2,coord); for (i=0;i<naep;i++){ Mm->stre.give_aepcoord (sid,i,coord); l[0]=coord[0]; l[1]=coord[1];l[2]=1.0-coord[0]-coord[1]; if (Mp->stressaver==0) appval (l,0,ncp,sig,stre); if (Mp->stressaver==1) appstress (lcid,eid,l,0,ncp,sig); Mm->stre.storevalues(lcid,eid,i,sig); } destrv (sig); destrv (coord); break; } default:{ fprintf (stderr,"\n\n unknown stress point is required in function planeelemlq::stresses (%s, line %d).\n",__FILE__,__LINE__); } } if (Mp->stressaver==0){ for (i=0;i<nne;i++){ delete [] stra[i]; delete [] stre[i]; } delete [] stra; delete [] stre; } }/** function computes load vector from edge forces fz of the DKT 15.3.2002*/void dktelem::nodeforces (long eid,long *le,double *nv,vector &nf){ double cn0,sn0,cn1,sn1,cn2,sn2; ivector nodes(nne); vector x(nne),y(nne),dl(3); Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); if (le[0]==1){ cn0= (y[1]-y[0])*dl[0]/60.; sn0=-(x[1]-x[0])*dl[0]/60.; nf[1]+=-(3.*nv[0]+2.*nv[3])*cn0; nf[2]+=-(3.*nv[0]+2.*nv[3])*sn0; nf[4]+= (2.*nv[0]+3.*nv[3])*cn0; nf[5]+= (2.*nv[0]+3.*nv[3])*sn0; nf[0]+=((2.-0.1)*nv[0] +(1.+0.1)*nv[3])*dl[0]/6.; nf[3]+=((1.-0.1)*nv[0] +(2.+0.1)*nv[3])*dl[0]/6.; } if (le[1]==1){ cn1= (y[2]-y[1])*dl[1]/60.; sn1=-(x[2]-x[1])*dl[1]/60.; nf[4]+=-(3.*nv[1]+2.*nv[0])*cn1; nf[5]+=-(3.*nv[1]+2.*nv[0])*sn1; nf[7]+= (2.*nv[1]+3.*nv[0])*cn1; nf[8]+= (2.*nv[1]+3.*nv[0])*sn1; nf[3]+=((2.-0.1)*nv[3] +(1.+0.1)*nv[6])*dl[1]/6.; nf[6]+=((1.-0.1)*nv[3] +(2.+0.1)*nv[6])*dl[1]/6.; } if (le[2]==1){ cn2= (y[0]-y[2])*dl[2]/60.; sn2=-(x[0]-x[2])*dl[2]/60.; nf[7]+=-(3.*nv[2]+2.*nv[1])*cn2; nf[8]+=-(3.*nv[2]+2.*nv[1])*sn2; nf[1]+= (2.*nv[2]+3.*nv[1])*cn2; nf[2]+= (2.*nv[2]+3.*nv[1])*sn2; nf[6]+=((2.-0.1)*nv[6] +(1.+0.1)*nv[9])*dl[2]/6.; nf[0]+=((1.-0.1)*nv[6] +(2.+0.1)*nv[9])*dl[2]/6.; }}/** function computes load vector from area forces fz of the DKT 15.3.2002*/void dktelem::areaforces (long eid,double *nv,vector &nf){ double pl,cn0,cn1,cn2,sn0,sn1,sn2; ivector nodes(nne); vector x(nne),y(nne); Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); pl = fabs(((x[1]-x[0])*(y[2]-y[0])-(x[2]-x[0])*(y[1]-y[0]))/2.); cn0= (y[1]-y[0])*pl/360.; cn1= (y[2]-y[1])*pl/360.; cn2= (y[0]-y[2])*pl/360.; sn0=-(x[1]-x[0])*pl/360.; sn1=-(x[2]-x[1])*pl/360.; sn2=-(x[0]-x[2])*pl/360.; nf[1]=-(7.*nv[0]+3.*nv[3]+5.*nv[6])*cn2+(7.*nv[0]+5.*nv[3]+3.*nv[6])*cn0; nf[2]=-(7.*nv[0]+3.*nv[3]+5.*nv[6])*sn2+(7.*nv[0]+5.*nv[3]+3.*nv[6])*sn0; nf[4]=-(5.*nv[0]+7.*nv[3]+3.*nv[6])*cn0+(3.*nv[0]+7.*nv[3]+5.*nv[6])*cn1; nf[5]=-(5.*nv[0]+7.*nv[3]+3.*nv[6])*sn0+(3.*nv[0]+7.*nv[3]+5.*nv[6])*sn1; nf[7]=-(3.*nv[0]+5.*nv[3]+7.*nv[6])*cn1+(5.*nv[0]+3.*nv[3]+7.*nv[6])*cn2; nf[8]=-(3.*nv[0]+5.*nv[3]+7.*nv[6])*sn1+(5.*nv[0]+3.*nv[3]+7.*nv[6])*sn2; nf[0]=(nv[0]/6. +nv[3]/12.+nv[6]/12.)*pl; nf[3]=(nv[0]/12.+nv[3]/6. +nv[6]/12.)*pl; nf[6]=(nv[0]/12.+nv[3]/12.+nv[6]/6. )*pl;}void dktelem::inicipval(long eid, long ri, long ci, matrix &nodval, inictype *ictn){ long i, j, k, ipp; long ii, jj, nv = nodval.n; long nstra; double xi, eta;// double ipval; vector w, gp1, gp2, anv(nne); nstra = 0; for (j = 0; j < nv; j++) // for all initial values { for(i = 0; i < nne; i++) // for all nodes on element anv[i] = nodval[i][j]; for (ii = 0; ii < nb; ii++) { for (jj = 0; jj < nb; jj++) { ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; if (intordsm[ii][jj] == 0) continue; allocv (intordsm[ii][jj],gp1); allocv (intordsm[ii][jj],gp2); allocv (intordsm[ii][jj],w); gauss_points_tr (gp1.a, gp2.a, w.a, intordsm[ii][jj]); for (k = 0; k < intordsm[ii][jj]; k++) { xi=gp1[k]; eta=gp2[k]; // value in integration point// ipval = approx_nat(xi, eta, anv); if ((ictn[i] & inistrain) && (j < Mm->ip[ipp].ncompstr)) { //Mm->ip[ipp].strain[j] += ipval; ipp++; continue; } if ((ictn[i] & inistress) && (j < nstra + Mm->ip[ipp].ncompstr)) { //Mm->ip[ipp].stress[j] += ipval; ipp++; continue; } if ((ictn[i] & iniother) && (j < nv)) { //Mm->ip[ipp].other[j] += ipval; ipp++; continue; } ipp++; } destrv(gp1); destrv (gp2); destrv (w); } } if (ictn[i] & inistrain) nstra++; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -