📄 linhex.cpp
字号:
#include <stdlib.h>#include <math.h>#include "linhex.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "intpoints.h"#include "node.h"#include "element.h"#include "loadcase.h"linhex::linhex (){ long i,j; // number of nodes on element nne=8; // number of DOFs on element ndofe=24; // number of strain/stress components tncomp=6; // number of functions approximated napfun=3; // order of numerical integration of mass matrix intordmm=2; // number of edges on element ned=12; // number of nodes on one edge nned=2; // order of numerical integration on element edges (boundaries) intordb=2; // number of surfaces on element nsurf=6; // number of nodes on one surface nnsurf=4; // strain/stress state ssst=spacestress; // number of blocks (parts of geometric matrix) nb=1; // number of strain/stress components ncomp = new long [nb]; ncomp[0]=6; // cumulative number of components approximated cncomp = new long [nb]; cncomp[0]=0; // number of integration points // order of numerical integration of stiffness matrix nip = new long* [nb]; intordsm = new long* [nb]; for (i=0;i<nb;i++){ nip[i] = new long [nb]; intordsm[i] = new long [nb]; } nip[0][0]=8; // total number of integration points tnip=0; for (i=0;i<nb;i++){ for (j=0;j<nb;j++){ tnip+=nip[i][j]; } } intordsm[0][0]=2;}linhex::~linhex (){ long i; for (i=0;i<nb;i++){ delete [] nip[i]; delete [] intordsm[i]; } delete [] nip; delete [] intordsm; delete [] cncomp; delete [] ncomp;}void linhex::eleminit (long eid){ long ii,jj; Mt->elements[eid].nb=nb; Mt->elements[eid].intordsm = new long* [nb]; Mt->elements[eid].nip = new long* [nb]; for (ii=0;ii<nb;ii++){ Mt->elements[eid].intordsm[ii] = new long [nb]; Mt->elements[eid].nip[ii] = new long [nb]; for (jj=0;jj<nb;jj++){ Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj]; Mt->elements[eid].nip[ii][jj]=nip[ii][jj]; } }}/** function approximates function defined by nodal values @param xi,eta,zeta - natural coordinates @param nodval - nodal values JK, 20.8.2001*/double linhex::approx (double xi,double eta,double zeta,vector &nodval){ double f; vector bf(nne); bf_lin_hex_3d (bf.a,xi,eta,zeta); scprd (bf,nodval,f); return f;}/** function assembles %matrix of approximation functions @param n - %matrix of approximation functions @param xi,eta,zeta - natural coordinates JK, 19.7.2001*/void linhex::bf_matrix (matrix &n,double xi,double eta,double zeta){ long i,j,k,l; vector bf(nne); fillm (0.0,n); bf_lin_hex_3d (bf.a,xi,eta,zeta); j=0; k=1; l=2; for (i=0;i<nne;i++){ n[0][j]=bf[i]; j+=3; n[1][k]=bf[i]; k+=3; n[2][l]=bf[i]; l+=3; }}/** function assembles strain-displacement (geometric) %matrix @param gm - geometric %matrix @param x,y,z - vectors containing element node coordinates @param xi,eta,zeta - natural coordinates @param jac - Jacobian JK, 19.7.2001*/void linhex::geom_matrix (matrix &gm,vector &x,vector &y,vector &z, double xi,double eta,double zeta,double &jac){ long i,j,k,l; vector dx(nne),dy(nne),dz(nne); dx_bf_lin_hex_3d (dx.a,eta,zeta); dy_bf_lin_hex_3d (dy.a,xi,zeta); dz_bf_lin_hex_3d (dz.a,xi,eta); derivatives_3d (dx,dy,dz,jac,x,y,z,xi,eta,zeta); fillm (0.0,gm); j=0; k=1; l=2; for (i=0;i<nne;i++){ gm[0][j]=dx[i]; gm[1][k]=dy[i]; gm[2][l]=dz[i]; gm[3][k]=dz[i]; gm[3][l]=dy[i]; gm[4][j]=dz[i]; gm[4][l]=dx[i]; gm[5][j]=dy[i]; gm[5][k]=dx[i]; j+=3; k+=3; l+=3; }}/** function assembles auxiliary vectors B for evaluation of stiffness %matrix in geometrically nonlinear problems @param x,y,z - array containing node coordinates @param xi,eta,zeta - natural coordinates @param jac - Jacobian @param b11,b12,b13,b21,b22,b23,b31,b32,b33 - vectors of derivatives of shape functions JK, 24.9.2005*/void linhex::bvectors (vector &x,vector &y,vector &z,double xi,double eta,double zeta,double &jac, vector &b11,vector &b12,vector &b13, vector &b21,vector &b22,vector &b23, vector &b31,vector &b32,vector &b33){ vector dx(nne),dy(nne),dz(nne); dx_bf_lin_hex_3d (dx.a,eta,zeta); dy_bf_lin_hex_3d (dy.a,xi,zeta); dz_bf_lin_hex_3d (dz.a,xi,eta); derivatives_3d (dx,dy,dz,jac,x,y,z,xi,eta,zeta); fillv (0.0,b11); fillv (0.0,b12); fillv (0.0,b13); fillv (0.0,b21); fillv (0.0,b22); fillv (0.0,b23); fillv (0.0,b31); fillv (0.0,b32); fillv (0.0,b33); // du/dx b11[0]=dx[0]; b11[3]=dx[1]; b11[6]=dx[2]; b11[9]=dx[3]; b11[12]=dx[4]; b11[15]=dx[5]; b11[18]=dx[6]; b11[21]=dx[7]; // du/dy b12[0]=dy[0]; b12[3]=dy[1]; b12[6]=dy[2]; b12[9]=dy[3]; b12[12]=dy[4]; b12[15]=dy[5]; b12[18]=dy[6]; b12[21]=dy[7]; // du/dz b13[0]=dz[0]; b13[3]=dz[1]; b13[6]=dz[2]; b13[9]=dz[3]; b13[12]=dz[4]; b13[15]=dz[5]; b13[18]=dz[6]; b13[21]=dz[7]; // dv/dx b21[1]=dx[0]; b21[4]=dx[1]; b21[7]=dx[2]; b21[10]=dx[3]; b21[13]=dx[4]; b21[16]=dx[5]; b21[19]=dx[6]; b21[22]=dx[7]; // dv/dy b22[1]=dy[0]; b22[4]=dy[1]; b22[7]=dy[2]; b22[10]=dy[3]; b22[13]=dy[4]; b22[16]=dy[5]; b22[19]=dy[6]; b22[22]=dy[7]; // dv/dz b23[1]=dz[0]; b23[4]=dz[1]; b23[7]=dz[2]; b23[10]=dz[3]; b23[13]=dz[4]; b23[16]=dz[5]; b23[19]=dz[6]; b23[22]=dz[7]; // dw/dx b31[2]=dx[0]; b31[5]=dx[1]; b31[8]=dx[2]; b31[11]=dx[3]; b31[14]=dx[4]; b31[17]=dx[5]; b31[20]=dx[6]; b31[23]=dx[7]; // dw/dy b32[2]=dy[0]; b32[5]=dy[1]; b32[8]=dy[2]; b32[11]=dy[3]; b32[14]=dy[4]; b32[17]=dy[5]; b32[20]=dy[6]; b32[23]=dy[7]; // dw/dz b33[2]=dz[0]; b33[5]=dz[1]; b33[8]=dz[2]; b33[11]=dz[3]; b33[14]=dz[4]; b33[17]=dz[5]; b33[20]=dz[6]; b33[23]=dz[7];}/** function computes strain-displacement %matrix for geometrically nonlinear problems @param gm - strain-displacement %matrix @param r - array of nodal displacements @param x,y,z - array containing node coordinates @param xi,eta,zeta - natural coordinates @param jac - Jacobian JK, 24.9.2005*/void linhex::gngeom_matrix (matrix &gm,vector &r,vector &x,vector &y,vector &z,double xi,double eta,double zeta,double &jac){ long i; double b11r,b12r,b13r,b21r,b22r,b23r,b31r,b32r,b33r; vector b11(ndofe),b12(ndofe),b13(ndofe),b21(ndofe),b22(ndofe),b23(ndofe),b31(ndofe),b32(ndofe),b33(ndofe),av(ndofe); fillm (0.0,gm); bvectors (x,y,z,xi,eta,zeta,jac,b11,b12,b13,b21,b22,b23,b31,b32,b33); scprd (b11,r,b11r); scprd (b12,r,b12r); scprd (b13,r,b13r); scprd (b21,r,b21r); scprd (b22,r,b22r); scprd (b23,r,b23r); scprd (b31,r,b31r); scprd (b32,r,b32r); scprd (b33,r,b33r); // ******* // E_11 // ******* // B11 dr for (i=0;i<ndofe;i++){ gm[0][i]+=b11[i]; } // r B11 B11 dr cmulv(b11r,b11,av); for (i=0;i<ndofe;i++){ gm[0][i]+=av[i]; } // r B21 B21 dr cmulv(b21r,b21,av); for (i=0;i<ndofe;i++){ gm[0][i]+=av[i]; } // r B31 B31 dr cmulv(b31r,b31,av); for (i=0;i<ndofe;i++){ gm[0][i]+=av[i]; } // ******* // E_22 // ******* // B22 dr for (i=0;i<ndofe;i++){ gm[1][i]+=b22[i]; } // r B12 B12 dr cmulv(b12r,b12,av); for (i=0;i<ndofe;i++){ gm[1][i]+=av[i]; } // r B22 B22 dr cmulv(b22r,b22,av); for (i=0;i<ndofe;i++){ gm[1][i]+=av[i]; } // r B32 B32 dr cmulv(b32r,b32,av); for (i=0;i<ndofe;i++){ gm[1][i]+=av[i]; } // ******* // E_33 // ******* // B33 dr for (i=0;i<ndofe;i++){ gm[2][i]+=b22[i]; } // r B13 B13 dr cmulv(b13r,b13,av); for (i=0;i<ndofe;i++){ gm[2][i]+=av[i]; } // r B23 B23 dr cmulv(b23r,b23,av); for (i=0;i<ndofe;i++){ gm[2][i]+=av[i]; } // r B33 B33 dr cmulv(b33r,b33,av); for (i=0;i<ndofe;i++){ gm[2][i]+=av[i]; } // ************** // E_23 = E_32 // ************** // (B23 + B32) dr for (i=0;i<ndofe;i++){ gm[3][i]+=b23[i]+b32[i]; } // r B13 B12 dr cmulv(b13r,b12,av); for (i=0;i<ndofe;i++){ gm[3][i]+=av[i]; } // r B12 B13 dr cmulv(b12r,b13,av); for (i=0;i<ndofe;i++){ gm[3][i]+=av[i]; } // r B23 B22 dr cmulv(b23r,b22,av); for (i=0;i<ndofe;i++){ gm[3][i]+=av[i]; } // r B22 B23 dr cmulv(b22r,b23,av); for (i=0;i<ndofe;i++){ gm[3][i]+=av[i]; } // r B33 B32 dr cmulv(b33r,b32,av); for (i=0;i<ndofe;i++){ gm[3][i]+=av[i]; } // r B32 B33 dr cmulv(b32r,b33,av); for (i=0;i<ndofe;i++){ gm[3][i]+=av[i]; } // ************** // E_31 = E_13 // ************** // (B31 + B13) dr for (i=0;i<ndofe;i++){ gm[4][i]+=b31[i]+b13[i]; } // r B11 B13 dr cmulv(b11r,b13,av); for (i=0;i<ndofe;i++){ gm[4][i]+=av[i]; } // r B13 B11 dr cmulv(b13r,b11,av); for (i=0;i<ndofe;i++){ gm[4][i]+=av[i]; } // r B21 B23 dr cmulv(b21r,b23,av); for (i=0;i<ndofe;i++){ gm[4][i]+=av[i]; } // r B23 B21 dr cmulv(b23r,b21,av); for (i=0;i<ndofe;i++){ gm[4][i]+=av[i]; } // r B31 B33 dr cmulv(b31r,b33,av); for (i=0;i<ndofe;i++){ gm[4][i]+=av[i]; } // r B33 B31 dr cmulv(b33r,b31,av); for (i=0;i<ndofe;i++){ gm[4][i]+=av[i]; } // ************** // E_12 = E_21 // ************** // (B12 + B21) dr for (i=0;i<ndofe;i++){ gm[5][i]+=b12[i]+b21[i]; } // r B12 B11 dr cmulv(b12r,b11,av); for (i=0;i<ndofe;i++){ gm[5][i]+=av[i]; } // r B11 B12 dr cmulv(b11r,b12,av); for (i=0;i<ndofe;i++){ gm[5][i]+=av[i]; } // r B22 B21 dr cmulv(b22r,b21,av); for (i=0;i<ndofe;i++){ gm[5][i]+=av[i]; } // r B21 B22 dr cmulv(b21r,b22,av); for (i=0;i<ndofe;i++){ gm[5][i]+=av[i]; } // r B32 B31 dr cmulv(b32r,b31,av); for (i=0;i<ndofe;i++){ gm[5][i]+=av[i]; } // r B31 B32 dr cmulv(b31r,b32,av); for (i=0;i<ndofe;i++){ gm[5][i]+=av[i]; } }/** function computes gradient %matrix for geometrically nonlinear problems @param grm - gradient %matrix @param x,y,z - array containing node coordinates @param xi,eta,zeta - natural coordinates @param jac - Jacobian JK, 24.9.2005*/void linhex::gnl_grmatrix (matrix &grm,vector &x,vector &y,vector &z,double xi,double eta,double zeta,double &jac){ long i; vector b11(ndofe),b12(ndofe),b13(ndofe),b21(ndofe),b22(ndofe),b23(ndofe),b31(ndofe),b32(ndofe),b33(ndofe); bvectors (x,y,z,xi,eta,zeta,jac,b11,b12,b13,b21,b22,b23,b31,b32,b33); for (i=0;i<ndofe;i++){ grm[0][i]=b11[i]; grm[1][i]=b12[i]; grm[2][i]=b13[i]; grm[3][i]=b21[i]; grm[4][i]=b22[i]; grm[5][i]=b23[i]; grm[6][i]=b31[i]; grm[7][i]=b32[i]; grm[8][i]=b33[i]; }}/** function assembles transformation %matrix from local nodal coordinate system to the global coordinate system x_g = T x_l @param nodes - nodes of element @param tmat - transformation %matrix JK*/void linhex::transf_matrix (ivector &nodes,matrix &tmat){ long i,n,m; fillm (0.0,tmat); n=nodes.n; m=tmat.m; for (i=0;i<m;i++){ tmat[i][i]=1.0; } for (i=0;i<n;i++){ if (Mt->nodes[nodes[i]].transf>0){ tmat[i*3+0][i*3]=Mt->nodes[nodes[i]].e1[0]; tmat[i*3+1][i*3]=Mt->nodes[nodes[i]].e1[1]; tmat[i*3+2][i*3]=Mt->nodes[nodes[i]].e1[2]; tmat[i*3+0][i*3+1]=Mt->nodes[nodes[i]].e2[0]; tmat[i*3+1][i*3+1]=Mt->nodes[nodes[i]].e2[1]; tmat[i*3+2][i*3+1]=Mt->nodes[nodes[i]].e2[2]; tmat[i*3+0][i*3+2]=Mt->nodes[nodes[i]].e3[0]; tmat[i*3+1][i*3+2]=Mt->nodes[nodes[i]].e3[1]; tmat[i*3+2][i*3+2]=Mt->nodes[nodes[i]].e3[2]; } }}/** function computes stiffness %matrix of one element function computes stiffness %matrix for geometrically linear problems @param eid - number of element @param ri,ci - row and column indices @param sm - stiffness %matrix JK, 19.7.2001*/void linhex::gl_stiffness_matrix (long eid,long ri,long ci,matrix &sm){ long i,j,k,ii,jj,ipp,transf; double xi,eta,zeta,jac; vector x(nne),y(nne),z(nne),w,gp; matrix gm,d(tncomp,tncomp); Mt->give_node_coord3d (x,y,z,eid); fillm (0.0,sm); for (ii=0;ii<nb;ii++){
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -