📄 linhex_8ip.cpp
字号:
#include <stdlib.h>#include <math.h>#include "linhex.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "intpoints.h"#include "node.h"#include "element.h"#include "loadcase.h"linhex::linhex (void){ long i; nne=8; ndofe=24; tnip=9; tncomp=6; napfun=3; intordmm=2; ned=12; nned=2; ssst=spacestress; nb=1; ncomp = new long [nb]; ncomp[0]=6; cncomp = new long [nb]; cncomp[0]=0; nip = new long* [nb]; intordsm = new long* [nb]; for (i=0;i<nb;i++){ nip[i] = new long [nb]; intordsm[i] = new long [nb]; } nip[0][0]=8; intordsm[0][0]=2;}linhex::~linhex (void){ long i; for (i=0;i<nb;i++){ delete [] nip[i]; delete [] intordsm[i]; } delete [] nip; delete [] intordsm; delete [] cncomp; delete [] ncomp;}void linhex::eleminit (long eid){ long ii,jj; Mt->elements[eid].nb=nb; Mt->elements[eid].intordsm = new long* [nb]; Mt->elements[eid].nip = new long* [nb]; for (ii=0;ii<nb;ii++){ Mt->elements[eid].intordsm[ii] = new long [nb]; Mt->elements[eid].nip[ii] = new long [nb]; for (jj=0;jj<nb;jj++){ Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj]; Mt->elements[eid].nip[ii][jj]=nip[ii][jj]; } }}/** function approximates function defined by nodal values @param xi,eta,zeta - natural coordinates @param nodval - nodal values 20.8.2001*/double linhex::approx (double xi,double eta,double zeta,vector &nodval){ double f; vector bf(nne); bf_lin_hex_3d (bf.a,xi,eta,zeta); scprd (bf,nodval,f); return f;}/** function assembles matrix of base functions @param n - matrix of base functions @param xi,eta,zeta - natural coordinates 19.7.2001*/void linhex::bf_matrix (matrix &n,double xi,double eta,double zeta){ long i,j,k,l; vector bf(nne); fillm (0.0,n); bf_lin_hex_3d (bf.a,xi,eta,zeta); j=0; k=1; l=2; for (i=0;i<nne;i++){ n[0][j]=bf[i]; j+=3; n[1][k]=bf[i]; k+=3; n[2][l]=bf[i]; l+=3; }}/** function assembles geometric matrix @param gm - geometric matrix @param x,y,z - vectors containing element node coordinates @param xi,eta,zeta - naturalcoordinates @param jac - Jacobian 19.7.2001*/void linhex::geom_matrix (matrix &gm,vector &x,vector &y,vector &z, double xi,double eta,double zeta,double &jac){ long i,j,k,l; vector dx(nne),dy(nne),dz(nne); dx_bf_lin_hex_3d (dx.a,eta,zeta); dy_bf_lin_hex_3d (dy.a,xi,zeta); dz_bf_lin_hex_3d (dz.a,xi,eta); derivatives_3d (dx,dy,dz,jac,x,y,z,xi,eta,zeta); fillm (0.0,gm); j=0; k=1; l=2; for (i=0;i<nne;i++){ gm[0][j]=dx[i]; gm[1][k]=dy[i]; gm[2][l]=dz[i]; gm[3][k]=dz[i]; gm[3][l]=dy[i]; gm[4][j]=dz[i]; gm[4][l]=dx[i]; gm[5][j]=dy[i]; gm[5][k]=dx[i]; j+=3; k+=3; l+=3; }}/** function assembles transformation matrix @param nodes - nodes of element @param tmat - transformation matrix */void linhex::transf_matrix (ivector &nodes,matrix &tmat){ long i,n,m; fillm (0.0,tmat); n=nodes.n; m=tmat.m; for (i=0;i<m;i++){ tmat[i][i]=1.0; } for (i=0;i<n;i++){ if (Mt->nodes[nodes[i]].transf>0){ tmat[i*3+0][i*3]=Mt->nodes[nodes[i]].e1[0]; tmat[i*3+1][i*3]=Mt->nodes[nodes[i]].e1[1]; tmat[i*3+2][i*3]=Mt->nodes[nodes[i]].e1[2]; tmat[i*3+0][i*3+1]=Mt->nodes[nodes[i]].e2[0]; tmat[i*3+1][i*3+1]=Mt->nodes[nodes[i]].e2[1]; tmat[i*3+2][i*3+1]=Mt->nodes[nodes[i]].e2[2]; tmat[i*3+0][i*3+2]=Mt->nodes[nodes[i]].e3[0]; tmat[i*3+1][i*3+2]=Mt->nodes[nodes[i]].e3[1]; tmat[i*3+2][i*3+2]=Mt->nodes[nodes[i]].e3[2]; } }}/** function computes stiffness matrix of one element @param eid - number of element @param ri,ci - row and column indices @param sm - stiffness matrix 19.7.2001*/void linhex::stiffness_matrix (long eid,long ri,long ci,matrix &sm){ long i,j,k,ii,jj,ipp,transf; double xi,eta,zeta,jac; vector x(nne),y(nne),z(nne),w,gp; matrix gm,d(tncomp,tncomp); Mt->give_node_coord3d (x,y,z,eid); fillm (0.0,sm); for (ii=0;ii<nb;ii++){ allocm (ncomp[ii],ndofe,gm); for (jj=0;jj<nb;jj++){ if (intordsm[ii][jj]==0) continue; allocv (intordsm[ii][jj],w); allocv (intordsm[ii][jj],gp); gauss_points (gp.a,w.a,intordsm[ii][jj]); ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; for (i=0;i<intordsm[ii][jj];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][jj];j++){ eta=gp[j]; for (k=0;k<intordsm[ii][jj];k++){ zeta=gp[k]; // geometric matrices geom_matrix (gm,x,y,z,xi,eta,zeta,jac); Mm->matstiff (d,ipp); ipp++; jac=fabs(jac); jac*=w[i]*w[j]*w[k]; // contribution to the stiffness matrix of the element bdbjac (sm,gm,d,gm,jac); } } } destrv (gp); destrv (w); } destrm (gm); } // transformation of stiffness matrix ivector nodes (nne); Mt->give_elemnodes (eid,nodes); transf = Mt->locsystems (nodes); if (transf>0){ matrix tmat (ndofe,ndofe); transf_matrix (nodes,tmat); glmatrixtransf (sm,tmat); } }/** function assembles resulting stiffness matrix of the element @param eid - element id @param sm - stiffness matrix JK, 9.5.2002*/void linhex::res_stiffness_matrix (long eid,matrix &sm){ stiffness_matrix (eid,0,0,sm);}/** function computes mass matrix @param eid - number of element @param mm - mass matrix 19.7.2001*/void linhex::mass_matrix (long eid,matrix &mm){ long i,j,k; double jac,xi,eta,zeta,rho; ivector nodes (nne); vector x(nne),y(nne),z(nne),w(intordmm),gp(intordmm),dens(nne); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mc->give_density (eid,nodes,dens); Mt->give_node_coord3d (x,y,z,eid); gauss_points (gp.a,w.a,intordmm); fillm (0.0,mm); for (i=0;i<intordmm;i++){ xi=gp[i]; for (j=0;j<intordmm;j++){ eta=gp[j]; for (k=0;k<intordmm;k++){ zeta=gp[k]; jac_3d (jac,x,y,z,xi,eta,zeta); jac=fabs(jac); bf_matrix (n,xi,eta,zeta); rho = approx (xi,eta,zeta,dens); jac*=w[i]*w[j]*w[k]*rho; nnj (mm.a,n.a,jac,n.m,n.n); } } } }/** function computes load matrix @param eid - number of element @param lm - load matrix 25.7.2001*/void linhex::load_matrix (long eid,matrix &lm){ long i,j,k; double jac,xi,eta,zeta,w1,w2,w3; ivector nodes (nne); vector x(nne),y(nne),z(nne),w(intordmm),gp(intordmm); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mt->give_node_coord3d (x,y,z,eid); gauss_points (gp.a,w.a,intordmm); fillm (0.0,lm); for (i=0;i<intordmm;i++){ xi=gp[i]; w1=w[i]; for (j=0;j<intordmm;j++){ eta=gp[j]; w2=w[j]; for (k=0;k<intordmm;k++){ zeta=gp[k]; w3=w[k]; jac_3d (jac,x,y,z,xi,eta,zeta); bf_matrix (n,xi,eta,zeta); jac*=w1*w2*w3; nnj (lm.a,n.a,jac,n.m,n.n); } } } }void linhex::res_mainip_strains (long lcid,long eid){ mainip_strains (lcid,eid,0,0);}/** function computes strains in main integration points of element @param lcid - load case id @param eid - element id @param ri - row index @param ci - column index 10.5.2002*/void linhex::mainip_strains (long lcid,long eid,long ri,long ci){ long i,j,k,ii,ipp; double xi,eta,zeta,jac; vector x(nne),y(nne),z(nne),r(ndofe),gp,w,eps,aux; ivector nodes(nne),cn(ndofe); matrix gm,tmat; Mt->give_elemnodes (eid,nodes); Mt->give_node_coord3d (x,y,z,eid); Mt->give_code_numbers (eid,cn.a); eldispl (lcid,r.a,cn.a,ndofe); // transformation of displacement vector long transf = Mt->locsystems (nodes); if (transf>0){ allocv (ndofe,aux); allocm (ndofe,ndofe,tmat); transf_matrix (nodes,tmat); locglobtransf (aux,r,tmat); copyv (aux,r); destrv (aux); destrm (tmat); } for (ii=0;ii<nb;ii++){ if (intordsm[ii][ii]==0) continue; allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocv (ncomp[0],eps); allocm (ncomp[0],ndofe,gm); gauss_points (gp.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; for (k=0;k<intordsm[ii][ii];k++){ zeta=gp[k]; geom_matrix (gm,x,y,z,xi,eta,zeta,jac); mxv (gm,r,eps); Mm->storestrain (lcid,ipp,cncomp[0],ncomp[0],eps); ipp++; } } } destrm (gm); destrv (w); destrv (gp); destrv (eps); } }/** function computes strains in nodes of element @param lcid - load case id @param eid - element id 10.5.2002*/void linhex::nod_strains (long lcid,long eid,long ri,long ci){ long i,j,k,ii,ipp; double xi,eta,zeta,*lsm,*lhs,*rhs; vector nxi(nne),neta(nne),nzeta(nne),gp,w,eps,natcoord(3); ivector nodes(nne); lsm = new double [16]; nodecoord (nxi,neta,nzeta); Mt->give_elemnodes (eid,nodes); for (ii=0;ii<nb;ii++){ if (intordsm[ii][ii]==0) continue; allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocv (ncomp[ii],eps); lhs = new double [ncomp[ii]*4]; rhs = new double [ncomp[ii]*4]; gauss_points (gp.a,w.a,intordsm[ii][ii]); nullv (lsm,16); nullv (rhs,ncomp[ii]*4); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; for (k=0;k<intordsm[ii][ii];k++){ zeta=gp[k]; Mm->givestrain (lcid,ipp,cncomp[ii],ncomp[ii],eps); natcoord[0]=xi; natcoord[1]=eta; natcoord[2]=zeta; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,eps); ipp++; } } } solve_lsm (lsm,lhs,rhs,Mp->zero,4,ncomp[ii]); Mt->strain_nodal_values (nodes,nxi,neta,nzeta,lhs,3,cncomp[ii],ncomp[ii],lcid); delete [] lhs; delete [] rhs; destrv (eps); destrv (w); destrv (gp); } delete [] lsm;}/** function computes strains on element @param val - array containing strains on element @param lcid - load case id @param eid - element id 19.9.2002*/void linhex::elem_strains (double **stra,long lcid,long eid,long ri,long ci){ long i,j,k,ii,ipp; double xi,eta,zeta,*lsm,*lhs,*rhs; vector nxi(nne),neta(nne),nzeta(nne),gp,w,eps,natcoord(3); lsm = new double [16]; nodecoord (nxi,neta,nzeta); for (ii=0;ii<nb;ii++){ allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocv (ncomp[ii],eps); lhs = new double [ncomp[ii]*4];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -