⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 microsim.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
字号:
#include "microSIM.h"#include "global.h"#include <math.h>#include <stdlib.h>microSIM::microSIM (void){  c1 = 6.20e-1;  c2 = 2.76;  c4 = 70.;  c5 = 2.50;  c6 = 1.30;  c7 = 50.;  c8 = 8.0;  c9 = 1.30;  c10 = 0.73;  c11 = 0.2;  c12 = 7000.;  c13 = 0.23;  c14 = 0.8;  c15 = 1.0;  c16 = 0.02;  c17 = 0.01;  c18 = 1.0;  c19 = 0.4;   mu = 1.0;    kronecker.a = new double [6];  kronecker.n = 6;  // kronecker delta  kronecker [0]= 1.;  kronecker [1]= 1.;  kronecker [2]= 1.;  kronecker [3]= 0.;  kronecker [4]= 0.;  kronecker [5]= 0.;}microSIM::~microSIM (void){}void microSIM::read(XFILE *in){  xfscanf(in,"%ld %lf %lf %lf %lf %lf %lf %lf %lf",	 &numberOfMicroplanes,&k1,&k2,&k3,&k4,&c3,&c20,&e,&nu);    ev = e/(1-2*nu);  ed = 5*e/(2+3*mu)/(1+nu);  et = mu*ed;  //compute microplaneweights and projection tensors  initializeData (numberOfMicroplanes);}void microSIM::initializeData (long numberOfMicroplanes ){  //computes microplane normals, weights and projection tensors  long i,i4,mPlane;  long ij[6][2] = {{1,1},{2,2},{3,3},{2,3},{3,1},{1,2}};  matrix microplaneNormals(numberOfMicroplanes,3);    projN.a = new double [numberOfMicroplanes*6];  projN.m = numberOfMicroplanes;  projN.n = 6;    microplaneWeights.a = new double [numberOfMicroplanes];  microplaneWeights.n = numberOfMicroplanes;    // definition of intergation points and weights    if (numberOfMicroplanes == 28) {    for (i=0; i<4; i++) {      microplaneWeights[i]    = 0.0160714276E0;      microplaneWeights[i+4]  = 0.0204744730E0;      microplaneWeights[i+8]  = 0.0204744730E0;      microplaneWeights[i+12] = 0.0204744730E0;      microplaneWeights[i+16] = 0.0158350505E0;      microplaneWeights[i+20] = 0.0158350505E0;      microplaneWeights[i+24] = 0.0158350505E0;    }    double help[7][3]={{0.577350259E0, 0.577350259E0, 0.577350259E0},		       {0.935113132E0, 0.250562787E0, 0.250562787E0},		       {0.250562787E0, 0.935113132E0, 0.250562787E0},		       {0.250562787E0, 0.250562787E0, 0.935113132E0},		       {0.186156720E0, 0.694746614E0, 0.694746614E0},		       {0.694746614E0, 0.186156720E0, 0.694746614E0},		       {0.694746614E0, 0.694746614E0, 0.186156720E0}};    for (i=0; i< 7; i++) {      i4 = i * 4;      microplaneNormals[i4  ][0] = help[i][0];      microplaneNormals[i4  ][1] = help[i][1];      microplaneNormals[i4  ][2] = help[i][2];      microplaneNormals[i4+1][0] = help[i][0];      microplaneNormals[i4+1][1] = help[i][1];      microplaneNormals[i4+1][2] =-help[i][2];      microplaneNormals[i4+2][0] = help[i][0];      microplaneNormals[i4+2][1] =-help[i][1];      microplaneNormals[i4+2][2] = help[i][2];      microplaneNormals[i4+3][0] = help[i][0];      microplaneNormals[i4+3][1] =-help[i][1];      microplaneNormals[i4+3][2] =-help[i][2];    }  }   else if (numberOfMicroplanes == 21){    for (i=0; i<3; i++) microplaneWeights[i]    = 0.02652141274;    for (i=3; i<9; i++) microplaneWeights[i]    = 0.01993014153;    for (i=9; i<21; i++) microplaneWeights[i]    = 0.02507124272;        microplaneNormals[0][0] =  microplaneNormals[1][1] =  microplaneNormals[2][2] = 1. ;    microplaneNormals[0][1] =  microplaneNormals[0][2] =  microplaneNormals[1][0] =       microplaneNormals[1][2] = microplaneNormals[2][0] = microplaneNormals[2][1] = 0.;    microplaneNormals[3][0] =  microplaneNormals[3][1] =  microplaneNormals[4][0] =       microplaneNormals[5][0] = microplaneNormals[5][2] = microplaneNormals[6][0] =      microplaneNormals[7][1] = microplaneNormals[7][2] = microplaneNormals[8][1] =      0.7071067812;    microplaneNormals[4][1] =  microplaneNormals[6][2] =  microplaneNormals[8][2] =       -0.7071067812;    microplaneNormals[3][2] =  microplaneNormals[4][2] =  microplaneNormals[5][1] =      microplaneNormals[6][1] =  microplaneNormals[7][0] =  microplaneNormals[8][0] = 0.;            double help [3][3] = {{0.3879072746, 0.3879072746, 0.8360956240},			    {0.3879072746, 0.8360956240, 0.3879072746},			    {0.8360956240, 0.3879072746, 0.3879072746}};        for(i=0; i<3;i++){      i4 = i * 4;      microplaneNormals[9+i4][0] = help [i][0];      microplaneNormals[9+i4][1] = help [i][1];      microplaneNormals[9+i4][2] = help [i][2];            microplaneNormals[10+i4][0] = help [i][0];      microplaneNormals[10+i4][1] = help [i][1];      microplaneNormals[10+i4][2] = -help [i][2];            microplaneNormals[11+i4][0] = help [i][0];      microplaneNormals[11+i4][1] = -help [i][1];      microplaneNormals[11+i4][2] = help [i][2];            microplaneNormals[12+i4][0] = help [i][0];      microplaneNormals[12+i4][1] = -help [i][1];      microplaneNormals[12+i4][2] = -help [i][2];    }  }  else  if(numberOfMicroplanes == 61){        double help [61][4]={      {1.000000000000, 0.000000000000, 0.000000000000, 0.00795844204678},      {0.745355992500, 0.0           , 0.666666666667, 0.00795844204678},      {0.745355992500,-0.577350269190,-0.333333333333, 0.00795844204678},      {0.745355992500, 0.577350269190,-0.333333333333, 0.00795844204678},      {0.333333333333, 0.577350269190, 0.745355992500, 0.00795844204678},      {0.333333333333,-0.577350269190, 0.745355992500, 0.00795844204678},      {0.333333333333,-0.934172358963, 0.127322003750, 0.00795844204678},      {0.333333333333,-0.356822089773,-0.872677996250, 0.00795844204678},      {0.333333333333, 0.356822089773,-0.872677996250, 0.00795844204678},      {0.333333333333, 0.934172358963, 0.127322003750, 0.00795844204678},      {0.794654472292,-0.525731112119, 0.303530999103, 0.0105155242892},      {0.794654472292, 0.0           ,-0.607061998207, 0.0105155242892},      {0.794654472292, 0.525731112119, 0.303530999103, 0.0105155242892},      {0.187592474085, 0.0           , 0.982246946377, 0.0105155242892},      {0.187592474085,-0.850650808352,-0.491123473188, 0.0105155242892},      {0.187592474085, 0.850650808352,-0.491123473188, 0.0105155242892},      {0.934172358963, 0.0           , 0.356822089773, 0.0100119364272},      {0.934172358963,-0.309016994375,-0.178411044887, 0.0100119364272},      {0.934172358963, 0.309016994375,-0.178411044887, 0.0100119364272},      {0.577350269190, 0.309016994375, 0.755761314076, 0.0100119364272},      {0.577350269190,-0.309016994375, 0.755761314076, 0.0100119364272},      {0.577350269190,-0.809016994375,-0.110264089708, 0.0100119364272},      {0.577350269190,-0.5           ,-0.645497224368, 0.0100119364272},      {0.577350269190, 0.5           ,-0.645497224368, 0.0100119364272},      {0.577350269190, 0.809016994375,-0.110264089708, 0.0100119364272},      {0.356822089773,-0.809016994375, 0.467086179481, 0.0100119364272},      {0.356822089773, 0.0           ,-0.934172358963, 0.0100119364272},      {0.356822089773, 0.809016994375, 0.467086179481, 0.0100119364272},      {0.0           , 0.5           , 0.866025403784, 0.0100119364272},      {0.0           ,-1.0           , 0.0           , 0.0100119364272},      {0.0           , 0.5           ,-0.866025403784, 0.0100119364272},      {0.947273580412,-0.277496978165, 0.160212955043, 0.00690477957966},      {0.812864676392,-0.277496978165, 0.512100034157, 0.00690477957966},      {0.595386501297,-0.582240127941, 0.553634669695, 0.00690477957966},      {0.595386501297,-0.770581752342, 0.227417407053, 0.00690477957966},      {0.812864676392,-0.582240127941,-0.015730584514, 0.00690477957966},      {0.492438766306,-0.753742692223,-0.435173546254, 0.00690477957966},      {0.274960591212,-0.942084316623,-0.192025554687, 0.00690477957966},      {-0.076926487903,-0.942084316623,-0.326434458707, 0.00690477957966},      {-0.076926487903,-0.753742692223,-0.652651721349, 0.00690477957966},      {0.274960591212,-0.637341166847,-0.719856173359, 0.00690477957966},      {0.947273580412, 0.0           ,-0.320425910085, 0.00690477957966},      {0.812864676392,-0.304743149777,-0.496369449643, 0.00690477957966},      {0.595386501297,-0.188341624401,-0.781052076747, 0.00690477957966},      {0.595386501297, 0.188341624401,-0.781052076747, 0.00690477957966},      {0.812864676392, 0.304743149777,-0.496369449643, 0.00690477957966},      {0.492438766306, 0.753742692223,-0.435173546254, 0.00690477957966},      {0.274960591212, 0.637341166847,-0.719856173359, 0.00690477957966},      {-0.076926487903, 0.753742692223,-0.652651721349, 0.00690477957966},      {-0.076926487903, 0.942084316623,-0.326434458707, 0.00690477957966},      {0.274960591212, 0.942084316623,-0.192025554687, 0.00690477957966},      {0.947273580412, 0.277496978165, 0.160212955043, 0.00690477957966},      {0.812864676392, 0.582240127941,-0.015730584514, 0.00690477957966},      {0.595386501297, 0.770581752342, 0.227417407053, 0.00690477957966},      {0.595386501297, 0.582240127941, 0.553634669695, 0.00690477957966},      {0.812864676392, 0.277496978165, 0.512100034157, 0.00690477957966},      {0.492438766306, 0.0           , 0.870347092509, 0.00690477957966},      {0.274960591212, 0.304743149777, 0.911881728046, 0.00690477957966},      {-0.076926487903, 0.188341624401, 0.979086180056, 0.00690477957966},      {-0.076926487903,-0.188341624401, 0.979086180056, 0.00690477957966},      {0.274960591212,-0.304743149777, 0.911881728046, 0.00690477957966}};        for(i=0; i<numberOfMicroplanes; i++){      microplaneNormals[i][0]= help[i][0];      microplaneNormals[i][1]= help[i][1];      microplaneNormals[i][2]= help[i][2];      microplaneWeights[i]   = help[i][3];    }  }else{    fprintf (stderr,"microSIM::initializeData   Unsupported number of microplanes");  }// compute projection tensors for each microplane  long ii,jj;  vector n(3), m(3), l(3);  for (mPlane=0; mPlane < numberOfMicroplanes; mPlane++) {    n[0] = microplaneNormals[mPlane][0];    n[1] = microplaneNormals[mPlane][1];    n[2] = microplaneNormals[mPlane][2];    for (i=0; i<6; i++) {      ii = ij[i][0]-1;      jj = ij[i][1]-1;      projN[mPlane][i] = n(ii)*n(jj);    }  }  return;}void microSIM::matstiff (matrix &d,long ipp,long ido)  //  function returns elastic stiffness matrix  //  d - elastic stiffness matrix{  Mm->elmatstiff (d,ipp);}void microSIM::nlstresses (long ipp,long ido){  long i, i_other,mPlaneIndex;  double previousSigmaV,previousSigmaN,previousSigmaD;  double sev,sed;  double cv,cd,meanN=0.;  double sigmaN,sigmaV,sigmaD;  double epsV,depsV, epsD, epsN, depsD,depsN;  vector macroStrain(6), macroStrainIncrement(6), macroSigma(6);    //  initial values of strain vector and strain increment  for (i=0;i<6;i++){    macroStrain[i] = Mm->ip[ipp].strain[i];    macroStrainIncrement[i] = Mm->ip[ipp].strain[i] - Mm->ip[ipp].eqother[ido+i+numberOfMicroplanes+1];    //UPDATE history variables= store total macroStrain    Mm->ip[ipp].other[ido+i+numberOfMicroplanes+1]=Mm->ip[ipp].strain[i];  }  //volumetric microstrain and microstrain increment  epsV = (macroStrain[0]+macroStrain[1]+macroStrain[2])/3.0;  depsV= (macroStrainIncrement[0]+macroStrainIncrement[1]+macroStrainIncrement[2])/3.0;  //ask for previous volumetric stress  previousSigmaV=Mm->ip[ipp].eqother[ido+0];    //loop over all microplanes  for (mPlaneIndex=0; mPlaneIndex < numberOfMicroplanes; mPlaneIndex++) {        //compute total microstrains on microplane and its increments    epsN=0., depsN=0.;    for (i=0; i<6; i++) {      epsN += projN [mPlaneIndex][i]*macroStrain[i];      depsN += projN [mPlaneIndex][i]*macroStrainIncrement[i];    }    epsD = epsN - epsV;    depsD = depsN - depsV;        //ask for previous stress components on microplane    i_other=ido+mPlaneIndex+1;//poradi komponenty v poli history parametru L,M,N    previousSigmaN=Mm->ip[ipp].eqother[i_other];    previousSigmaD=previousSigmaN-previousSigmaV;        //evaluation of new microplane stresses    //secant moduli    cv = ev;    cd = ed;        //volumetric microstress    sev=previousSigmaV + cv*depsV;    sigmaV=minim( maxim(sev,FVminus(epsV)), FVplus(epsV));    //deviatoric microstress    sed=previousSigmaD + cd*depsD;     sigmaD=minim(maxim(sed,FDminus(epsD)),FDplus(epsD));    //normal microstress    sigmaN=minim( (sigmaV+sigmaD) ,FN(epsN,previousSigmaV));         //mean normal microstress (computed after sweeping throgh all microplanes)    meanN += sigmaN* microplaneWeights[mPlaneIndex]*6.0;    //UPDATE history variables, i.e. store microstresses    Mm->ip[ipp].other[i_other]=sigmaN;      }//end 1st loop over nmp      //volumetric stress is the same for all  mplanes  //and does not need to be homogenized .  //Only updating accordinging to mean normal stress must be done.     if (sigmaV > (meanN/3.))  {sigmaV = meanN/3.;}  //UPDATE history variables= store posibly new sigmaV  Mm->ip[ipp].other[ido+0]=sigmaV;    fillv(0,macroSigma);//zero macroSigma  //compute macrostresstensor  for (mPlaneIndex=0; mPlaneIndex < numberOfMicroplanes; mPlaneIndex++) {    i_other=ido+mPlaneIndex+1;//poradi komponenty v poli history parametru L,M,N    sigmaN=Mm->ip[ipp].other[i_other];    //recalculation of sigmaD according to possibly new sigmaV     sigmaD = sigmaN - sigmaV;            for (i=0; i<6; i++) {      macroSigma[i]+=(projN[mPlaneIndex][i]-kronecker[i]/3.)*sigmaD*microplaneWeights[mPlaneIndex]*6.0;      }      }//end 2nd loop over nmp    //2nd constraint, addition of volumetric part  macroSigma[0]+=sigmaV;  macroSigma[1]+=sigmaV;  macroSigma[2]+=sigmaV;    //send new macrostress vector to the solver  Mm->storestress(0,ipp,macroSigma);}void microSIM::updateval(long ipp,long im,long ido){  long i,n = Mm->givencompother(ipp, im);  for (i=0;i<n;i++){    Mm->ip[ipp].eqother[ido+i]=Mm->ip[ipp].other[ido+i];  }}inline doublemicroSIM  :: macbra(double x) /* Macauley bracket = positive part of x */{  return(maxim(x,0.0));}inline doublemicroSIM :: FVplus (double epsV)/*positive volumetric boundary */{  return(ev*k1*c13/(1+(c14/k1)*macbra(epsV-c13*c15*k1)));}inline doublemicroSIM :: FVminus (double epsV)/*negative volumetric boundary */{return(-e*k1*k3*exp(-epsV/(k1*k4)));}inline doublemicroSIM :: FDminus(double epsD) /*negative deviatoric boundary */ {   double a;   a=macbra(-epsD-c8*c9*k1)/(k1*c7);   return(-e*k1*c8/(1+a*a)); }inline doublemicroSIM  :: FDplus(double epsD)/*positive deviatoric bondary */{  double a;  a=(macbra(epsD-c5*c6*k1)/(k1*c20*c7));  return (e*k1*c5/(1+a*a));}inline doublemicroSIM :: FN(double epsN,double sigmaV) /*normal boundary */{  return(e*k1*c1*exp(-macbra(epsN-c1*c2*k1)/(k1*c3+macbra(-c4*(sigmaV/ev)))));}inline doublemicroSIM :: maxim (double a,double b){  return(a>b ? a:b);}inline doublemicroSIM :: minim (double a,double b){  return(a<b ? a:b);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -