⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 axisymqq_nb3.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
📖 第 1 页 / 共 3 页
字号:
  nodecoord (nxi,neta);    for (ii=0;ii<nb;ii++){    allocv (intordsm[ii][ii],gp);    allocv (intordsm[ii][ii],w);    allocv (ncomp[ii],sig);    allocv (ncomp[ii],auxsig);    lhs = new double [ncomp[ii]*3];    rhs = new double [ncomp[ii]*3];    gauss_points (gp.a,w.a,intordsm[ii][ii]);        nullv (lsm,9);    nullv (rhs,ncomp[ii]*3);        ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];        for (i=0;i<intordsm[ii][ii];i++){      xi=gp[i];      for (j=0;j<intordsm[ii][ii];j++){	eta=gp[j];		Mm->matstiff (d,ipp);	ipp++;		fillv (0.0,sig);	for (jj=0;jj<nb;jj++){	  allocv (ncomp[jj],eps);	  allocm (ncomp[ii],ncomp[jj],dd);	  if (Mp->strainaver==0)	    appval (xi,eta,cncomp[jj],ncomp[jj],eps,stra);	  if (Mp->strainaver==1)	    appstrain (lcid,eid,xi,eta,cncomp[jj],ncomp[jj],eps);	  /*	  if (Mt->elements[eid].presctemp==1){	    allocv (tncomp,epstt);	    tempstrains (lcid,eid,ipp,xi,eta,epstt);	    allocv (ncomp[jj],epst);	    extract (epst,epstt,cncomp[jj],ncomp[jj]);	    subv (eps,epst,eps);	    destrv (epst);  destrv (epstt);	  }	  */	  //dmatblock (ii,jj,d,dd);	  //mxv (dd,eps,auxsig);	  fprintf (Out,"\n element %6ld   int. point %6ld %6ld  %e %e %e %e",eid+1,ii,jj,eps[0],eps[1],eps[2],eps[3]);	  printf ("\n element %6ld   int. point %6ld %6ld  %e %e %e %e",eid+1,i,j,eps[0],eps[1],eps[2],eps[3]);	  mxv (d,eps,auxsig);	  addv (auxsig,sig,sig);	  destrm (dd);  destrv (eps);	}	natcoord[0]=xi;  natcoord[1]=eta;	matassem_lsm (lsm,natcoord);	rhsassem_lsm (rhs,natcoord,sig);	      }    }            solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[ii]);    nodal_values (stre,nxi,neta,nxi,lhs,2,cncomp[ii],ncomp[ii]);    delete [] lhs;  delete [] rhs;    destrv (auxsig);  destrv (sig);  destrv (eps);  destrv (w);  destrv (gp);  }    delete [] lsm;}/**   function computes stresses in arbitrary point on element      @param lcid - load case id   @param eid - element id   @param xi, eta - natural coordinates of the point   @param fi,li - first and last indices   @param sig - array containing stresses      11.5.2002*/void axisymqq::appstress (long lcid,long eid,double xi,double eta,long fi,long ncomp,vector &sig){  long i,j,k;  ivector nodes;  vector nodval;    if (ncomp != sig.n){    fprintf (stderr,"\n\n wrong interval of indices in function stress (%s, line %d).\n",__FILE__,__LINE__);    abort ();  }  allocv (nne,nodes);  allocv (nne,nodval);  Mt->give_elemnodes (eid,nodes);  k=0;  for (i=fi;i<fi+ncomp;i++){    for (j=0;j<nne;j++){      nodval[j]=Mt->nodes[nodes[j]].stress[lcid*tncomp+i];    }    sig[k]=approx (xi,eta,nodval);    k++;  }    destrv (nodes);  destrv (nodval);}/**   function computes stresses in all integration points      @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices      10.5.2002*/void axisymqq::res_allip_stresses (long lcid,long eid){  allip_stresses (lcid,eid,0,0);}/**   function computes stresses in all integration points      @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices      10.5.2002*/void axisymqq::allip_stresses (long lcid,long eid,long ri,long ci){  res_mainip_stresses (lcid,eid);}void axisymqq::stresses (long lcid,long eid,long ri,long ci){  long i,naep,ncp,sid;  double **stra,**stre;  vector coord,sig;    /*  if (Mp->stressaver==0){    stra = new double* [nne];    stre = new double* [nne];    for (i=0;i<nne;i++){      stra[i] = new double [tncomp];      stre[i] = new double [tncomp];    }    elem_strains (stra,lcid,eid,ri,ci);    elem_stresses (stra,stre,lcid,eid,ri,ci);  }  */  switch (Mm->stre.tape[eid]){  case nowhere:{    break;  }  case intpts:{    //allip_stresses (stre,lcid,eid,ri,ci);    //mainip_stresses (lcid,eid,ri,ci);    break;  }  case enodes:{    break;  }  case userdefined:{    //  number of auxiliary element points    naep = Mm->stre.give_naep (eid);    ncp = Mm->stre.give_ncomp (eid);    sid = Mm->stre.give_sid (eid);    allocv (ncp,sig);    allocv (2,coord);    for (i=0;i<naep;i++){      Mm->stre.give_aepcoord (sid,i,coord);            if (Mp->stressaver==0)	appval (coord[0],coord[1],0,ncp,sig,stre);      if (Mp->stressaver==1)	appstress (lcid,eid,coord[0],coord[1],0,ncp,sig);            Mm->stre.storevalues(lcid,eid,i,sig);    }    destrv (sig);    destrv (coord);    break;  }  default:{    fprintf (stderr,"\n\n unknown stress point is required in function planeelemlq::stresses (%s, line %d).\n",__FILE__,__LINE__);  }  }  if (Mp->stressaver==0){    for (i=0;i<nne;i++){      delete [] stra[i];      delete [] stre[i];    }    delete [] stra;    delete [] stre;  }}/**   function computes load matrix of the axisymmetric quadrilateral   finite element with bilinear approximation functions   load vector is obtained after premultiplying load matrix   by nodal load values      @param eid - number of element   @param lm - load matrix   8.12.2001*/void axisymqq::load_matrix (long eid,matrix &lm){  long i,j;  double jac,xi,eta,r;  ivector nodes(nne);  vector x(nne),y(nne),w(intordmm),gp(intordmm);  matrix n(napfun,ndofe);    Mt->give_elemnodes (eid,nodes);  Mt->give_node_coord2d (x,y,eid);  gauss_points (gp.a,w.a,intordmm);    fillm (0.0,lm);  for (i=0;i<intordmm;i++){    xi=gp[i];    for (j=0;j<intordmm;j++){      eta=gp[j];      jac_2d (jac,x,y,xi,eta);      bf_matrix (n,xi,eta);            r = approx (xi,eta,x);      jac*=r*w[i]*w[j];            nnj (lm.a,n.a,jac,n.m,n.n);    }  }  }void axisymqq::res_temp_forces (long lcid,long eid,vector &nfor){  vector x(nne),y(nne);  Mt->give_node_coord2d (x,y,eid);  temp_forces (lcid,eid,0,0,nfor,x,y);}/**   function computes nodal forces caused by temperature changes      @param eid - element id   @param ri,ci - row and column indices   @param nfor - array containing nodal forces   @param x,y - nodal coordinates      22.11.2002, JK*/void axisymqq::temp_forces (long lcid,long eid,long ri,long ci,vector &nfor,vector &x,vector &y){  long i,j,k,ii,ipp;  double xi,eta,jac;  vector eps,sig,contr(ndofe),epst(tncomp),gp,w;  matrix d(tncomp,tncomp),dd,gm;    fillv (0.0,nfor);  for (ii=0;ii<nb;ii++){        allocv (intordsm[ii][ii],w);    allocv (intordsm[ii][ii],gp);        allocm (ncomp[ii],ndofe,gm);    allocm (ncomp[ii],ncomp[ii],dd);    allocv (ncomp[ii],eps);    allocv (ncomp[ii],sig);        gauss_points (gp.a,w.a,intordsm[ii][ii]);        ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];    for (i=0;i<intordsm[ii][ii];i++){      xi=gp[i];      for (j=0;j<intordsm[ii][ii];j++){	eta=gp[j];		tempstrains (lcid,eid,ipp,xi,eta,epst);	extract (eps,epst,cncomp[ii],ncomp[ii]);		Mm->matstiff (d,ipp);	ipp++;	dmatblock (ii,ii,d,dd);	mxv (dd,eps,sig);	geom_matrix_block (gm,ii,x,y,xi,eta,jac);	mtxv (gm,sig,contr);	cmulv (jac*w[i]*w[j],contr);		for (k=0;k<contr.n;k++){	  nfor[k]+=contr[k];	}	      }    }    destrv (sig);  destrv (eps);  destrv (gp);  destrv (w);    destrm (dd);  destrm (gm);  }}/**   function computes strains caused by temperature changes      @param lcid - load case id   @param eid - element id   @param ipp - integration point pointer   @param xi,eta - natural coordinates   @param eps - array containing strains      22.12.2002, JK*/void axisymqq::tempstrains (long lcid,long eid,long ipp,double xi,double eta,vector &eps){  double temp;  ivector nodes(nne);  vector dt(nne),tvect(tncomp);  matrix d(tncomp,tncomp);  Mt->give_elemnodes (eid,nodes);  Mb->lc[lcid].tempchanges (dt.a,nodes);  temp = approx (xi,eta,dt);  fillv (temp,tvect);    Mm->matdilat (d,ipp);  mxv (d,tvect,eps);    Mm->storeeigstrain (ipp,eps);}/**   function computes internal forces   @param lcid - number of load case   @param eid - element id   @param ri,ci - row and column indices   @param ifor - vector of internal forces      8.12.2001*/void axisymqq::internal_forces (long lcid,long eid,vector &ifor){  long i,j,k,ii,ipp;  double xi,eta,jac,rad;  ivector nodes(nne),cn(ndofe);  vector x(nne),y(nne),w,gp;  vector r(ndofe),eps(tncomp),sig,contr(ndofe),auxcontr(ndofe);  matrix gm;    Mt->give_elemnodes (eid,nodes);  Mt->give_node_coord2d (x,y,eid);  Mt->give_code_numbers (eid,cn.a);  eldispl (0,r.a,cn.a,ndofe);    fillv (0.0,ifor);    for (ii=0;ii<nb;ii++){    if (intordsm[ii][ii]==0)  continue;        allocv (intordsm[ii][ii],gp);    allocv (intordsm[ii][ii],w);    allocm (ncomp[ii],ndofe,gm);    allocv (ncomp[ii],sig);        gauss_points (gp.a,w.a,intordsm[ii][ii]);    ipp=Mt->elements[eid].ipp[ii][ii];        for (i=0;i<intordsm[ii][ii];i++){      xi=gp[i];      for (j=0;j<intordsm[ii][ii];j++){	eta=gp[j];			Mm->computenlstresses (ipp);		Mm->givestress (lcid,ipp,cncomp[ii],ncomp[ii],sig);	geom_matrix_block (gm,ii,x,y,xi,eta,jac);	mtxv (gm,sig,contr);		rad = approx (xi,eta,x);	cmulv (rad*jac*w[i]*w[j],contr);		for (k=0;k<contr.n;k++){	  ifor[k]+=contr[k];	}		ipp++;	      }    }    destrv (sig);  destrm (gm);  destrv (w);  destrv (gp);  }}void axisymqq::res_internal_forces (long lcid,long eid,vector &ifor){  internal_forces (lcid,eid,ifor);}void axisymqq::nodeforces (long eid,long *le,double *nv,vector &nf){  long i;  double ww,jac,xi,eta;  vector x(nne),y(nne),gp(intordb),w(intordb),av(ndofe),v(ndofe);  matrix n(napfun,ndofe),am(ndofe,ndofe);    Mt->give_node_coord2d (x,y,eid);  gauss_points (gp.a,w.a,intordb);  if (le[0]==1){    fillm (0.0,am);    eta = 1.0;    for (i=0;i<intordb;i++){      xi = gp[i];      ww = w[i];            bf_matrix (n,xi,eta);            jac1d_2d (jac,x,y,xi,0);      jac *= ww;      nnj (am.a,n.a,jac,n.m,n.n);    }    fillv (0.0,av);    av[0]=nv[0];  av[1]=nv[1];  av[2]=nv[2];  av[3]=nv[3];    mxv (am,av,v);  addv (nf,v,nf);  }  if (le[1]==1){    fillm (0.0,am);    xi = -1.0;    for (i=0;i<intordb;i++){      eta = gp[i];      ww = w[i];      bf_matrix (n,xi,eta);            jac1d_2d (jac,x,y,eta,1);      jac *= ww;            nnj (am.a,n.a,jac,n.m,n.n);    }    fillv (0.0,av);    av[2]=nv[4];  av[3]=nv[5];  av[4]=nv[6];  av[5]=nv[7];    mxv (am,av,v);  addv (nf,v,nf);  }  if (le[2]==1){    fillm (0.0,am);    eta = -1.0;    for (i=0;i<intordb;i++){      xi = gp[i];      ww = w[i];            bf_matrix (n,xi,eta);            jac1d_2d (jac,x,y,xi,2);      jac *= ww;            nnj (am.a,n.a,jac,n.m,n.n);    }    fillv (0.0,av);    av[4]=nv[8];  av[5]=nv[9];  av[6]=nv[10];  av[7]=nv[11];    mxv (am,av,v);  addv (nf,v,nf);  }  if (le[3]==1){    fillm (0.0,am);    xi = 1.0;    for (i=0;i<intordb;i++){      eta = gp[i];      ww = w[i];            bf_matrix (n,xi,eta);            jac1d_2d (jac,x,y,eta,3);      jac *= ww;      nnj (am.a,n.a,jac,n.m,n.n);    }    fillv (0.0,av);    av[6]=nv[12];  av[7]=nv[13];  av[0]=nv[14];  av[1]=nv[15];    mxv (am,av,v);  addv (nf,v,nf);  }}void axisymqq::inicipval(long eid, long ri, long ci, matrix &nodval, inictype *ictn){  long i, j, k, l, ipp;  long ii, jj, nv = nodval.n;  long nstra;  double xi, eta, ipval;  vector w, gp, anv(nne);  nstra = 0;  for (j = 0; j < nv; j++) // for all initial values  {    for(i = 0; i < nne; i++)      anv[i] = nodval[i][j];    for (ii = 0; ii < nb; ii++)    {      for (jj = 0; jj < nb; jj++)      {        ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];        if (intordsm[ii][jj] == 0)          continue;        allocv (intordsm[ii][jj],gp);        allocv (intordsm[ii][jj],w);        gauss_points (gp.a,w.a,intordsm[ii][jj]);        for (k = 0; k < intordsm[ii][jj]; k++)        {          xi=gp[k];          for (l = 0; l < intordsm[ii][jj]; l++)          {            eta=gp[l];            //  value in integration point            ipval = approx (xi,eta,anv);            if ((ictn[i] & inistrain) && (j < Mm->ip[ipp].ncompstr))            {              Mm->ip[ipp].strain[j] += ipval;              ipp++;              continue;            }            if ((ictn[i] & inistress) && (j < nstra + Mm->ip[ipp].ncompstr))            {              Mm->ip[ipp].stress[j] += ipval;              ipp++;              continue;            }            if ((ictn[i] & iniother) && (j < nv))            {              Mm->ip[ipp].other[j] += ipval;              ipp++;              continue;            }            ipp++;          }        }        destrv (gp);  destrv (w);      }    }    if (ictn[i] & inistrain) nstra++;  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -