📄 axisymqq_nb3.cpp
字号:
nodecoord (nxi,neta); for (ii=0;ii<nb;ii++){ allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocv (ncomp[ii],sig); allocv (ncomp[ii],auxsig); lhs = new double [ncomp[ii]*3]; rhs = new double [ncomp[ii]*3]; gauss_points (gp.a,w.a,intordsm[ii][ii]); nullv (lsm,9); nullv (rhs,ncomp[ii]*3); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; Mm->matstiff (d,ipp); ipp++; fillv (0.0,sig); for (jj=0;jj<nb;jj++){ allocv (ncomp[jj],eps); allocm (ncomp[ii],ncomp[jj],dd); if (Mp->strainaver==0) appval (xi,eta,cncomp[jj],ncomp[jj],eps,stra); if (Mp->strainaver==1) appstrain (lcid,eid,xi,eta,cncomp[jj],ncomp[jj],eps); /* if (Mt->elements[eid].presctemp==1){ allocv (tncomp,epstt); tempstrains (lcid,eid,ipp,xi,eta,epstt); allocv (ncomp[jj],epst); extract (epst,epstt,cncomp[jj],ncomp[jj]); subv (eps,epst,eps); destrv (epst); destrv (epstt); } */ //dmatblock (ii,jj,d,dd); //mxv (dd,eps,auxsig); fprintf (Out,"\n element %6ld int. point %6ld %6ld %e %e %e %e",eid+1,ii,jj,eps[0],eps[1],eps[2],eps[3]); printf ("\n element %6ld int. point %6ld %6ld %e %e %e %e",eid+1,i,j,eps[0],eps[1],eps[2],eps[3]); mxv (d,eps,auxsig); addv (auxsig,sig,sig); destrm (dd); destrv (eps); } natcoord[0]=xi; natcoord[1]=eta; matassem_lsm (lsm,natcoord); rhsassem_lsm (rhs,natcoord,sig); } } solve_lsm (lsm,lhs,rhs,Mp->zero,3,ncomp[ii]); nodal_values (stre,nxi,neta,nxi,lhs,2,cncomp[ii],ncomp[ii]); delete [] lhs; delete [] rhs; destrv (auxsig); destrv (sig); destrv (eps); destrv (w); destrv (gp); } delete [] lsm;}/** function computes stresses in arbitrary point on element @param lcid - load case id @param eid - element id @param xi, eta - natural coordinates of the point @param fi,li - first and last indices @param sig - array containing stresses 11.5.2002*/void axisymqq::appstress (long lcid,long eid,double xi,double eta,long fi,long ncomp,vector &sig){ long i,j,k; ivector nodes; vector nodval; if (ncomp != sig.n){ fprintf (stderr,"\n\n wrong interval of indices in function stress (%s, line %d).\n",__FILE__,__LINE__); abort (); } allocv (nne,nodes); allocv (nne,nodval); Mt->give_elemnodes (eid,nodes); k=0; for (i=fi;i<fi+ncomp;i++){ for (j=0;j<nne;j++){ nodval[j]=Mt->nodes[nodes[j]].stress[lcid*tncomp+i]; } sig[k]=approx (xi,eta,nodval); k++; } destrv (nodes); destrv (nodval);}/** function computes stresses in all integration points @param lcid - load case id @param eid - element id @param ri,ci - row and column indices 10.5.2002*/void axisymqq::res_allip_stresses (long lcid,long eid){ allip_stresses (lcid,eid,0,0);}/** function computes stresses in all integration points @param lcid - load case id @param eid - element id @param ri,ci - row and column indices 10.5.2002*/void axisymqq::allip_stresses (long lcid,long eid,long ri,long ci){ res_mainip_stresses (lcid,eid);}void axisymqq::stresses (long lcid,long eid,long ri,long ci){ long i,naep,ncp,sid; double **stra,**stre; vector coord,sig; /* if (Mp->stressaver==0){ stra = new double* [nne]; stre = new double* [nne]; for (i=0;i<nne;i++){ stra[i] = new double [tncomp]; stre[i] = new double [tncomp]; } elem_strains (stra,lcid,eid,ri,ci); elem_stresses (stra,stre,lcid,eid,ri,ci); } */ switch (Mm->stre.tape[eid]){ case nowhere:{ break; } case intpts:{ //allip_stresses (stre,lcid,eid,ri,ci); //mainip_stresses (lcid,eid,ri,ci); break; } case enodes:{ break; } case userdefined:{ // number of auxiliary element points naep = Mm->stre.give_naep (eid); ncp = Mm->stre.give_ncomp (eid); sid = Mm->stre.give_sid (eid); allocv (ncp,sig); allocv (2,coord); for (i=0;i<naep;i++){ Mm->stre.give_aepcoord (sid,i,coord); if (Mp->stressaver==0) appval (coord[0],coord[1],0,ncp,sig,stre); if (Mp->stressaver==1) appstress (lcid,eid,coord[0],coord[1],0,ncp,sig); Mm->stre.storevalues(lcid,eid,i,sig); } destrv (sig); destrv (coord); break; } default:{ fprintf (stderr,"\n\n unknown stress point is required in function planeelemlq::stresses (%s, line %d).\n",__FILE__,__LINE__); } } if (Mp->stressaver==0){ for (i=0;i<nne;i++){ delete [] stra[i]; delete [] stre[i]; } delete [] stra; delete [] stre; }}/** function computes load matrix of the axisymmetric quadrilateral finite element with bilinear approximation functions load vector is obtained after premultiplying load matrix by nodal load values @param eid - number of element @param lm - load matrix 8.12.2001*/void axisymqq::load_matrix (long eid,matrix &lm){ long i,j; double jac,xi,eta,r; ivector nodes(nne); vector x(nne),y(nne),w(intordmm),gp(intordmm); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); gauss_points (gp.a,w.a,intordmm); fillm (0.0,lm); for (i=0;i<intordmm;i++){ xi=gp[i]; for (j=0;j<intordmm;j++){ eta=gp[j]; jac_2d (jac,x,y,xi,eta); bf_matrix (n,xi,eta); r = approx (xi,eta,x); jac*=r*w[i]*w[j]; nnj (lm.a,n.a,jac,n.m,n.n); } } }void axisymqq::res_temp_forces (long lcid,long eid,vector &nfor){ vector x(nne),y(nne); Mt->give_node_coord2d (x,y,eid); temp_forces (lcid,eid,0,0,nfor,x,y);}/** function computes nodal forces caused by temperature changes @param eid - element id @param ri,ci - row and column indices @param nfor - array containing nodal forces @param x,y - nodal coordinates 22.11.2002, JK*/void axisymqq::temp_forces (long lcid,long eid,long ri,long ci,vector &nfor,vector &x,vector &y){ long i,j,k,ii,ipp; double xi,eta,jac; vector eps,sig,contr(ndofe),epst(tncomp),gp,w; matrix d(tncomp,tncomp),dd,gm; fillv (0.0,nfor); for (ii=0;ii<nb;ii++){ allocv (intordsm[ii][ii],w); allocv (intordsm[ii][ii],gp); allocm (ncomp[ii],ndofe,gm); allocm (ncomp[ii],ncomp[ii],dd); allocv (ncomp[ii],eps); allocv (ncomp[ii],sig); gauss_points (gp.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; tempstrains (lcid,eid,ipp,xi,eta,epst); extract (eps,epst,cncomp[ii],ncomp[ii]); Mm->matstiff (d,ipp); ipp++; dmatblock (ii,ii,d,dd); mxv (dd,eps,sig); geom_matrix_block (gm,ii,x,y,xi,eta,jac); mtxv (gm,sig,contr); cmulv (jac*w[i]*w[j],contr); for (k=0;k<contr.n;k++){ nfor[k]+=contr[k]; } } } destrv (sig); destrv (eps); destrv (gp); destrv (w); destrm (dd); destrm (gm); }}/** function computes strains caused by temperature changes @param lcid - load case id @param eid - element id @param ipp - integration point pointer @param xi,eta - natural coordinates @param eps - array containing strains 22.12.2002, JK*/void axisymqq::tempstrains (long lcid,long eid,long ipp,double xi,double eta,vector &eps){ double temp; ivector nodes(nne); vector dt(nne),tvect(tncomp); matrix d(tncomp,tncomp); Mt->give_elemnodes (eid,nodes); Mb->lc[lcid].tempchanges (dt.a,nodes); temp = approx (xi,eta,dt); fillv (temp,tvect); Mm->matdilat (d,ipp); mxv (d,tvect,eps); Mm->storeeigstrain (ipp,eps);}/** function computes internal forces @param lcid - number of load case @param eid - element id @param ri,ci - row and column indices @param ifor - vector of internal forces 8.12.2001*/void axisymqq::internal_forces (long lcid,long eid,vector &ifor){ long i,j,k,ii,ipp; double xi,eta,jac,rad; ivector nodes(nne),cn(ndofe); vector x(nne),y(nne),w,gp; vector r(ndofe),eps(tncomp),sig,contr(ndofe),auxcontr(ndofe); matrix gm; Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); Mt->give_code_numbers (eid,cn.a); eldispl (0,r.a,cn.a,ndofe); fillv (0.0,ifor); for (ii=0;ii<nb;ii++){ if (intordsm[ii][ii]==0) continue; allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocm (ncomp[ii],ndofe,gm); allocv (ncomp[ii],sig); gauss_points (gp.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ii][ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; Mm->computenlstresses (ipp); Mm->givestress (lcid,ipp,cncomp[ii],ncomp[ii],sig); geom_matrix_block (gm,ii,x,y,xi,eta,jac); mtxv (gm,sig,contr); rad = approx (xi,eta,x); cmulv (rad*jac*w[i]*w[j],contr); for (k=0;k<contr.n;k++){ ifor[k]+=contr[k]; } ipp++; } } destrv (sig); destrm (gm); destrv (w); destrv (gp); }}void axisymqq::res_internal_forces (long lcid,long eid,vector &ifor){ internal_forces (lcid,eid,ifor);}void axisymqq::nodeforces (long eid,long *le,double *nv,vector &nf){ long i; double ww,jac,xi,eta; vector x(nne),y(nne),gp(intordb),w(intordb),av(ndofe),v(ndofe); matrix n(napfun,ndofe),am(ndofe,ndofe); Mt->give_node_coord2d (x,y,eid); gauss_points (gp.a,w.a,intordb); if (le[0]==1){ fillm (0.0,am); eta = 1.0; for (i=0;i<intordb;i++){ xi = gp[i]; ww = w[i]; bf_matrix (n,xi,eta); jac1d_2d (jac,x,y,xi,0); jac *= ww; nnj (am.a,n.a,jac,n.m,n.n); } fillv (0.0,av); av[0]=nv[0]; av[1]=nv[1]; av[2]=nv[2]; av[3]=nv[3]; mxv (am,av,v); addv (nf,v,nf); } if (le[1]==1){ fillm (0.0,am); xi = -1.0; for (i=0;i<intordb;i++){ eta = gp[i]; ww = w[i]; bf_matrix (n,xi,eta); jac1d_2d (jac,x,y,eta,1); jac *= ww; nnj (am.a,n.a,jac,n.m,n.n); } fillv (0.0,av); av[2]=nv[4]; av[3]=nv[5]; av[4]=nv[6]; av[5]=nv[7]; mxv (am,av,v); addv (nf,v,nf); } if (le[2]==1){ fillm (0.0,am); eta = -1.0; for (i=0;i<intordb;i++){ xi = gp[i]; ww = w[i]; bf_matrix (n,xi,eta); jac1d_2d (jac,x,y,xi,2); jac *= ww; nnj (am.a,n.a,jac,n.m,n.n); } fillv (0.0,av); av[4]=nv[8]; av[5]=nv[9]; av[6]=nv[10]; av[7]=nv[11]; mxv (am,av,v); addv (nf,v,nf); } if (le[3]==1){ fillm (0.0,am); xi = 1.0; for (i=0;i<intordb;i++){ eta = gp[i]; ww = w[i]; bf_matrix (n,xi,eta); jac1d_2d (jac,x,y,eta,3); jac *= ww; nnj (am.a,n.a,jac,n.m,n.n); } fillv (0.0,av); av[6]=nv[12]; av[7]=nv[13]; av[0]=nv[14]; av[1]=nv[15]; mxv (am,av,v); addv (nf,v,nf); }}void axisymqq::inicipval(long eid, long ri, long ci, matrix &nodval, inictype *ictn){ long i, j, k, l, ipp; long ii, jj, nv = nodval.n; long nstra; double xi, eta, ipval; vector w, gp, anv(nne); nstra = 0; for (j = 0; j < nv; j++) // for all initial values { for(i = 0; i < nne; i++) anv[i] = nodval[i][j]; for (ii = 0; ii < nb; ii++) { for (jj = 0; jj < nb; jj++) { ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; if (intordsm[ii][jj] == 0) continue; allocv (intordsm[ii][jj],gp); allocv (intordsm[ii][jj],w); gauss_points (gp.a,w.a,intordsm[ii][jj]); for (k = 0; k < intordsm[ii][jj]; k++) { xi=gp[k]; for (l = 0; l < intordsm[ii][jj]; l++) { eta=gp[l]; // value in integration point ipval = approx (xi,eta,anv); if ((ictn[i] & inistrain) && (j < Mm->ip[ipp].ncompstr)) { Mm->ip[ipp].strain[j] += ipval; ipp++; continue; } if ((ictn[i] & inistress) && (j < nstra + Mm->ip[ipp].ncompstr)) { Mm->ip[ipp].stress[j] += ipval; ipp++; continue; } if ((ictn[i] & iniother) && (j < nv)) { Mm->ip[ipp].other[j] += ipval; ipp++; continue; } ipp++; } } destrv (gp); destrv (w); } } if (ictn[i] & inistrain) nstra++; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -