📄 plelemqt.cpp
字号:
#include "plelemqt.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "adaptivity.h"#include "node.h"#include "element.h"#include "intpoints.h"#include "plelemlt.h"#include "plelemsubqt.h"#include "plelemlq.h"#include "plelemqq.h"#include "loadcase.h"#include "gadaptivity.h"#include <stdlib.h>#include <math.h>planeelemqt::planeelemqt (void){ long i,j; // number nodes on element nne=6; // number of DOFs on element ndofe=12; // number of strain/stress components tncomp=3; // number of functions approximated napfun=2; // order of numerical integration of mass matrix intordmm=6; // number of edges on element ned=3; // number of nodes on one edge nned=3; // order of numerical integration on element edges (boundaries) intordb=3; // number of blocks (parts of geometric matrix) nb=2; ncomp = new long [nb]; ncomp[0]=2; ncomp[1]=1; cncomp = new long [nb]; cncomp[0]=0; cncomp[1]=2; nip = new long* [nb]; intordsm = new long* [nb]; for (i=0;i<nb;i++){ nip[i] = new long [nb]; intordsm[i] = new long [nb]; } nip[0][0]=3; nip[0][1]=0; nip[1][0]=0; nip[1][1]=3; tnip=0; for (i=0;i<nb;i++){ for (j=0;j<nb;j++){ tnip+=nip[i][j]; } } intordsm[0][0]=3; intordsm[0][1]=0; intordsm[1][0]=0; intordsm[1][1]=3;}planeelemqt::~planeelemqt (void){ long i; for (i=0;i<nb;i++){ delete [] nip[i]; delete [] intordsm[i]; } delete [] nip; delete [] intordsm; delete [] ncomp; delete [] cncomp;}void planeelemqt::eleminit (long eid){ long ii,jj; Mt->elements[eid].nb=nb; Mt->elements[eid].intordsm = new long* [nb]; Mt->elements[eid].nip = new long* [nb]; for (ii=0;ii<nb;ii++){ Mt->elements[eid].intordsm[ii] = new long [nb]; Mt->elements[eid].nip[ii] = new long [nb]; for (jj=0;jj<nb;jj++){ Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj]; Mt->elements[eid].nip[ii][jj]=nip[ii][jj]; } }}/** function approximates function defined by nodal values @param xi,eta - natural coordinates @param nodval - nodal values 1.4.2002*/double planeelemqt::approx (double xi,double eta,vector &nodval){ double f; vector bf(nne); bf_quad_3_2d (bf.a,xi,eta); scprd (bf,nodval,f); return f;}/** function assembles %matrix of approximation function @param n - %matrix of approximation functions @param xi,eta - natural coordinates 17.8.2001*/void planeelemqt::bf_matrix (matrix &n,double xi,double eta){ long i,i1,i2; vector bf(nne); bf_quad_3_2d (bf.a,xi,eta); fillm (0.0,n); i1=0; i2=1; for (i=0;i<nne;i++){ n[0][i1]=bf[i]; i1+=2; n[1][i2]=bf[i]; i2+=2; }}/** function assembles geometric %matrix @param gm - geometric %matrix @param x,y - node coordinates @param xi,eta - natural coordinates @param jac - Jacobian 1.4.2002*/void planeelemqt::geom_matrix (matrix &gm,vector &x,vector &y,double xi,double eta,double &jac){ long i,i1,i2; vector dx(nne),dy(nne); dx_bf_quad_3_2d (dx.a,xi,eta); dy_bf_quad_3_2d (dy.a,xi,eta); derivatives_2d (dx,dy,jac,x,y,xi,eta); fillm (0.0,gm); i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dx[i]; gm[1][i2]=dy[i]; gm[2][i1]=dy[i]; i1+=2; gm[2][i2]=dx[i]; i2+=2; }}/** function assembles geometric %matrix @param gm - geometric %matrix @param x,y - node coordinates @param xi,eta - natural coordinates @param jac - Jacobian 1.4.2002*/void planeelemqt::geom_matrix_block (matrix &gm,long ri,vector &x,vector &y,double xi,double eta,double &jac){ long i,i1,i2; vector dx(nne),dy(nne); dx_bf_quad_3_2d (dx.a,xi,eta); dy_bf_quad_3_2d (dy.a,xi,eta); derivatives_2d (dx,dy,jac,x,y,xi,eta); fillm (0.0,gm); if (ri==0){ i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dx[i]; i1+=2; gm[1][i2]=dy[i]; i2+=2; } } if (ri==1){ i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dy[i]; i1+=2; gm[0][i2]=dx[i]; i2+=2; } }}/** function assembles blocks of stiffness %matrix of material @param ri - row index @param ci - column index @param d - stiffness %matrix of material @param dd - required block of stiffness %matrix of material*/void planeelemqt::dmatblock (long ri,long ci,matrix &d, matrix &dd){ fillm (0.0,dd); if (ri==0 && ci==0){ dd[0][0]=d[0][0]; dd[0][1]=d[0][1]; dd[1][0]=d[1][0]; dd[1][1]=d[1][1]; } if (ri==0 && ci==1){ dd[0][0]=d[0][2]; dd[1][0]=d[1][2]; } if (ri==1 && ci==0){ dd[0][0]=d[2][0]; dd[0][1]=d[2][1]; } if (ri==1 && ci==1){ dd[0][0]=d[2][2]; }}/** function assembles transformation %matrix x_g = T x_l 17.8.2001*/void planeelemqt::transf_matrix (ivector &nodes,matrix &tmat){ long i,n,m; fillm (0.0,tmat); n=nodes.n; m=tmat.m; for (i=0;i<m;i++){ tmat[i][i]=1.0; } for (i=0;i<n;i++){ if (Mt->nodes[nodes[i]].transf>0){ tmat[i*2][i*2] = Mt->nodes[nodes[i]].e1[0]; tmat[i*2][i*2+1] = Mt->nodes[nodes[i]].e2[0]; tmat[i*2+1][i*2] = Mt->nodes[nodes[i]].e1[1]; tmat[i*2+1][i*2+1] = Mt->nodes[nodes[i]].e2[1]; } }}/** function computes stiffness %matrix of triangular finite element with quadratic approximation functions @param eid - element id @param sm - stiffness %matrix 25.8.2001*/void planeelemqt::stiffness_matrix (long eid,long ri,long ci,matrix &sm,vector &x,vector &y){ long i,ii,jj,ipp; double jac,thick; ivector nodes(nne); vector t(nne),gp1,gp2,w; matrix gmr,gmc,dd,d(tncomp,tncomp); Mt->give_elemnodes (eid,nodes); Mc->give_thickness (eid,nodes,t); fillm (0.0,sm); for (ii=0;ii<nb;ii++){ allocm (ncomp[ii],ndofe,gmr); for (jj=0;jj<nb;jj++){ if (intordsm[ii][jj]==0) continue; allocm (ncomp[jj],ndofe,gmc); allocm (ncomp[ii],ncomp[jj],dd); allocv (intordsm[ii][jj],gp1); allocv (intordsm[ii][jj],gp2); allocv (intordsm[ii][jj],w); gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][jj]); ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; for (i=0;i<intordsm[ii][jj];i++){ // geometric matrix geom_matrix_block (gmr,ii,x,y,gp1[i],gp2[i],jac); geom_matrix_block (gmc,jj,x,y,gp1[i],gp2[i],jac); // stiffness matrix of material Mm->matstiff (d,ipp); dmatblock (ii,jj,d,dd); // thickness thick = approx (gp1[i],gp2[i],t); jac*=w[i]*thick; //fprintf (stdout,"\n jakobian %lf",jac); // contribution to the stiffness matrix of the element //bdbj (sm.a,gm.a,d.a,jac,gm.m,gm.n); bdbjac (sm,gmr,dd,gmc,jac); ipp++; } destrm (dd); destrm (gmc); destrv (gp1); destrv (gp2); destrv (w); } destrm (gmr); }}void planeelemqt::res_stiffness_matrix (long eid,matrix &sm){ long transf; vector x(nne),y(nne); ivector nodes(nne); Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); stiffness_matrix (eid,0,0,sm,x,y); // transformation of stiffness matrix transf = Mt->locsystems (nodes); if (transf>0){ matrix tmat (ndofe,ndofe); transf_matrix (nodes,tmat); glmatrixtransf (sm,tmat); }}/** function computes mass %matrix of triangular finite element with quadratic approximation functions @param eid - element id @param mm - mass %matrix 25.8.2001*/void planeelemqt::mass_matrix (long eid,matrix &mm){ long i; double jac,thick,rho; ivector nodes(nne); vector x(nne),y(nne),w(intordmm),gp1(intordmm),gp2(intordmm),t(nne),dens(nne); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); Mc->give_thickness (eid,nodes,t); Mc->give_density (eid,nodes,dens); gauss_points_tr (gp1.a,gp2.a,w.a,intordmm); fillm (0.0,mm); for (i=0;i<intordmm;i++){ // matrix of approximation functions bf_matrix (n,gp1[i],gp2[i]); // thickness thick = approx (gp1[i],gp2[i],t); // density rho = approx (gp1[i],gp2[i],dens); // Jacobian jac_2d (jac,x,y,gp1[i],gp2[i]); jac*=w[i]*thick*rho; // N^T.N multiplication nnj (mm.a,n.a,jac,n.m,n.n); }}/** function computes load %matrix of triangular finite element with quadratic approximation functions load %vector is obtained after premultiplying load %matrix by nodal load values @param eid - number of element @param lm - load %matrix 25.8.2001*/void planeelemqt::load_matrix (long eid,matrix &lm){ long i; double jac,thick; ivector nodes(nne); vector x(nne),y(nne),w(intordmm),gp1(intordmm),gp2(intordmm),t(nne); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); Mc->give_thickness (eid,nodes,t); gauss_points_tr (gp1.a,gp2.a,w.a,intordmm); fillm (0.0,lm); for (i=0;i<intordmm;i++){ bf_matrix (n,gp1[i],gp2[i]); thick = approx (gp1[i],gp2[i],t); jac_2d (jac,x,y,gp1[i],gp2[i]); jac*=w[i]*thick; nnj (lm.a,n.a,jac,n.m,n.n); } }void planeelemqt::res_mainip_strains (long lcid,long eid){ vector aux,x(nne),y(nne),r(ndofe); ivector cn(ndofe),nodes(nne); matrix tmat; Mt->give_node_coord2d (x,y,eid); Mt->give_elemnodes (eid,nodes); Mt->give_code_numbers (eid,cn.a); eldispl (lcid,eid,r.a,cn.a,ndofe); // transformation of displacement vector long transf = Mt->locsystems (nodes); if (transf>0){ allocv (ndofe,aux); allocm (ndofe,ndofe,tmat); transf_matrix (nodes,tmat); //locglobtransf (aux,r,tmat); lgvectortransf (aux,r,tmat); copyv (aux,r); destrv (aux); destrm (tmat); } mainip_strains (lcid,eid,0,0,x,y,r); }/** function computes strains in main integration points of element @param lcid - load case id @param eid - element id @param ri - row index @param ci - column index 10.5.2002*/void planeelemqt::mainip_strains (long lcid,long eid,long ri,long ci,vector &x,vector &y,vector &r){ long i,ii,ipp; double jac; vector gp1,gp2,w,eps; matrix gm;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -