⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 plelemqt.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
📖 第 1 页 / 共 4 页
字号:
#include "plelemqt.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "adaptivity.h"#include "node.h"#include "element.h"#include "intpoints.h"#include "plelemlt.h"#include "plelemsubqt.h"#include "plelemlq.h"#include "plelemqq.h"#include "loadcase.h"#include "gadaptivity.h"#include <stdlib.h>#include <math.h>planeelemqt::planeelemqt (void){  long i,j;    //  number nodes on element  nne=6;  //  number of DOFs on element  ndofe=12;  //  number of strain/stress components  tncomp=3;  //  number of functions approximated  napfun=2;  //  order of numerical integration of mass matrix  intordmm=6;  //  number of edges on element  ned=3;  //  number of nodes on one edge  nned=3;  //  order of numerical integration on element edges (boundaries)  intordb=3;  //  number of blocks (parts of geometric matrix)  nb=2;  ncomp = new long [nb];  ncomp[0]=2;  ncomp[1]=1;  cncomp = new long [nb];  cncomp[0]=0;  cncomp[1]=2;  nip = new long* [nb];  intordsm = new long* [nb];  for (i=0;i<nb;i++){    nip[i] = new long [nb];    intordsm[i] = new long [nb];  }    nip[0][0]=3;  nip[0][1]=0;  nip[1][0]=0;  nip[1][1]=3;    tnip=0;  for (i=0;i<nb;i++){    for (j=0;j<nb;j++){      tnip+=nip[i][j];    }  }  intordsm[0][0]=3;  intordsm[0][1]=0;  intordsm[1][0]=0;  intordsm[1][1]=3;}planeelemqt::~planeelemqt (void){  long i;    for (i=0;i<nb;i++){    delete [] nip[i];    delete [] intordsm[i];  }  delete [] nip;  delete [] intordsm;    delete [] ncomp;  delete [] cncomp;}void planeelemqt::eleminit (long eid){  long ii,jj;  Mt->elements[eid].nb=nb;  Mt->elements[eid].intordsm = new long* [nb];  Mt->elements[eid].nip = new long* [nb];  for (ii=0;ii<nb;ii++){    Mt->elements[eid].intordsm[ii] = new long [nb];    Mt->elements[eid].nip[ii] = new long [nb];    for (jj=0;jj<nb;jj++){      Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj];      Mt->elements[eid].nip[ii][jj]=nip[ii][jj];    }  }}/**   function approximates function defined by nodal values   @param xi,eta - natural coordinates   @param nodval - nodal values      1.4.2002*/double planeelemqt::approx (double xi,double eta,vector &nodval){  double f;  vector bf(nne);    bf_quad_3_2d (bf.a,xi,eta);  scprd (bf,nodval,f);  return f;}/**   function assembles %matrix of approximation function      @param n - %matrix of approximation functions   @param xi,eta - natural coordinates      17.8.2001*/void planeelemqt::bf_matrix (matrix &n,double xi,double eta){  long i,i1,i2;  vector bf(nne);    bf_quad_3_2d (bf.a,xi,eta);  fillm (0.0,n);    i1=0;  i2=1;  for (i=0;i<nne;i++){    n[0][i1]=bf[i];  i1+=2;    n[1][i2]=bf[i];  i2+=2;  }}/**   function assembles geometric %matrix      @param gm - geometric %matrix   @param x,y - node coordinates   @param xi,eta - natural coordinates   @param jac - Jacobian      1.4.2002*/void planeelemqt::geom_matrix (matrix &gm,vector &x,vector &y,double xi,double eta,double &jac){  long i,i1,i2;  vector dx(nne),dy(nne);    dx_bf_quad_3_2d (dx.a,xi,eta);  dy_bf_quad_3_2d (dy.a,xi,eta);  derivatives_2d (dx,dy,jac,x,y,xi,eta);  fillm (0.0,gm);  i1=0;  i2=1;  for (i=0;i<nne;i++){    gm[0][i1]=dx[i];    gm[1][i2]=dy[i];    gm[2][i1]=dy[i];  i1+=2;    gm[2][i2]=dx[i];  i2+=2;  }}/**   function assembles geometric %matrix      @param gm - geometric %matrix   @param x,y - node coordinates   @param xi,eta - natural coordinates   @param jac - Jacobian      1.4.2002*/void planeelemqt::geom_matrix_block (matrix &gm,long ri,vector &x,vector &y,double xi,double eta,double &jac){  long i,i1,i2;  vector dx(nne),dy(nne);    dx_bf_quad_3_2d (dx.a,xi,eta);  dy_bf_quad_3_2d (dy.a,xi,eta);  derivatives_2d (dx,dy,jac,x,y,xi,eta);  fillm (0.0,gm);  if (ri==0){    i1=0;  i2=1;    for (i=0;i<nne;i++){      gm[0][i1]=dx[i];  i1+=2;      gm[1][i2]=dy[i];  i2+=2;    }  }    if (ri==1){    i1=0;  i2=1;    for (i=0;i<nne;i++){      gm[0][i1]=dy[i];  i1+=2;      gm[0][i2]=dx[i];  i2+=2;    }  }}/**   function assembles blocks of stiffness %matrix of material      @param ri - row index   @param ci - column index   @param d - stiffness %matrix of material   @param dd - required block of stiffness %matrix of material*/void planeelemqt::dmatblock (long ri,long ci,matrix &d, matrix &dd){  fillm (0.0,dd);    if (ri==0 && ci==0){    dd[0][0]=d[0][0];  dd[0][1]=d[0][1];    dd[1][0]=d[1][0];  dd[1][1]=d[1][1];  }  if (ri==0 && ci==1){    dd[0][0]=d[0][2];    dd[1][0]=d[1][2];  }  if (ri==1 && ci==0){    dd[0][0]=d[2][0];  dd[0][1]=d[2][1];  }  if (ri==1 && ci==1){    dd[0][0]=d[2][2];  }}/**   function assembles transformation %matrix x_g = T x_l      17.8.2001*/void planeelemqt::transf_matrix (ivector &nodes,matrix &tmat){  long i,n,m;  fillm (0.0,tmat);  n=nodes.n;  m=tmat.m;  for (i=0;i<m;i++){    tmat[i][i]=1.0;  }    for (i=0;i<n;i++){    if (Mt->nodes[nodes[i]].transf>0){      tmat[i*2][i*2]   = Mt->nodes[nodes[i]].e1[0];  tmat[i*2][i*2+1]   = Mt->nodes[nodes[i]].e2[0];      tmat[i*2+1][i*2] = Mt->nodes[nodes[i]].e1[1];  tmat[i*2+1][i*2+1] = Mt->nodes[nodes[i]].e2[1];    }  }}/**   function computes stiffness %matrix of triangular   finite element with quadratic approximation functions   @param eid - element id   @param sm - stiffness %matrix   25.8.2001*/void planeelemqt::stiffness_matrix (long eid,long ri,long ci,matrix &sm,vector &x,vector &y){  long i,ii,jj,ipp;  double jac,thick;  ivector nodes(nne);  vector t(nne),gp1,gp2,w;  matrix gmr,gmc,dd,d(tncomp,tncomp);  Mt->give_elemnodes (eid,nodes);  Mc->give_thickness (eid,nodes,t);  fillm (0.0,sm);  for (ii=0;ii<nb;ii++){    allocm (ncomp[ii],ndofe,gmr);    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;      allocm (ncomp[jj],ndofe,gmc);      allocm (ncomp[ii],ncomp[jj],dd);      allocv (intordsm[ii][jj],gp1);      allocv (intordsm[ii][jj],gp2);      allocv (intordsm[ii][jj],w);      gauss_points_tr (gp1.a,gp2.a,w.a,intordsm[ii][jj]);      ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];            for (i=0;i<intordsm[ii][jj];i++){	// geometric matrix	geom_matrix_block (gmr,ii,x,y,gp1[i],gp2[i],jac);	geom_matrix_block (gmc,jj,x,y,gp1[i],gp2[i],jac);		//  stiffness matrix of material	Mm->matstiff (d,ipp);	dmatblock (ii,jj,d,dd);		//  thickness	thick = approx (gp1[i],gp2[i],t);		jac*=w[i]*thick;		//fprintf (stdout,"\n jakobian  %lf",jac);		//  contribution to the stiffness matrix of the element	//bdbj (sm.a,gm.a,d.a,jac,gm.m,gm.n);	bdbjac (sm,gmr,dd,gmc,jac);		ipp++;      }      destrm (dd);  destrm (gmc);  destrv (gp1);  destrv (gp2);  destrv (w);    }    destrm (gmr);  }}void planeelemqt::res_stiffness_matrix (long eid,matrix &sm){  long transf;  vector x(nne),y(nne);  ivector nodes(nne);  Mt->give_elemnodes (eid,nodes);  Mt->give_node_coord2d (x,y,eid);  stiffness_matrix (eid,0,0,sm,x,y);  //  transformation of stiffness matrix  transf = Mt->locsystems (nodes);  if (transf>0){    matrix tmat (ndofe,ndofe);    transf_matrix (nodes,tmat);    glmatrixtransf (sm,tmat);  }}/**   function computes mass %matrix of triangular   finite element with quadratic approximation functions   @param eid - element id   @param mm - mass %matrix   25.8.2001*/void planeelemqt::mass_matrix (long eid,matrix &mm){  long i;  double jac,thick,rho;  ivector nodes(nne);  vector x(nne),y(nne),w(intordmm),gp1(intordmm),gp2(intordmm),t(nne),dens(nne);  matrix n(napfun,ndofe);  Mt->give_elemnodes (eid,nodes);  Mt->give_node_coord2d (x,y,eid);  Mc->give_thickness (eid,nodes,t);  Mc->give_density (eid,nodes,dens);  gauss_points_tr (gp1.a,gp2.a,w.a,intordmm);  fillm (0.0,mm);  for (i=0;i<intordmm;i++){    //  matrix of approximation functions    bf_matrix (n,gp1[i],gp2[i]);    //  thickness    thick = approx (gp1[i],gp2[i],t);    //  density    rho = approx (gp1[i],gp2[i],dens);    //  Jacobian    jac_2d (jac,x,y,gp1[i],gp2[i]);    jac*=w[i]*thick*rho;    //  N^T.N multiplication    nnj (mm.a,n.a,jac,n.m,n.n);  }}/**   function computes load %matrix of triangular   finite element with quadratic approximation functions   load %vector is obtained after premultiplying load %matrix   by nodal load values   @param eid - number of element   @param lm - load %matrix   25.8.2001*/void planeelemqt::load_matrix (long eid,matrix &lm){  long i;  double jac,thick;  ivector nodes(nne);  vector x(nne),y(nne),w(intordmm),gp1(intordmm),gp2(intordmm),t(nne);  matrix n(napfun,ndofe);    Mt->give_elemnodes (eid,nodes);  Mt->give_node_coord2d (x,y,eid);  Mc->give_thickness (eid,nodes,t);  gauss_points_tr (gp1.a,gp2.a,w.a,intordmm);  fillm (0.0,lm);    for (i=0;i<intordmm;i++){    bf_matrix (n,gp1[i],gp2[i]);        thick = approx (gp1[i],gp2[i],t);        jac_2d (jac,x,y,gp1[i],gp2[i]);        jac*=w[i]*thick;        nnj (lm.a,n.a,jac,n.m,n.n);  }  }void planeelemqt::res_mainip_strains (long lcid,long eid){  vector aux,x(nne),y(nne),r(ndofe);  ivector cn(ndofe),nodes(nne);  matrix tmat;  Mt->give_node_coord2d (x,y,eid);  Mt->give_elemnodes (eid,nodes);  Mt->give_code_numbers (eid,cn.a);  eldispl (lcid,eid,r.a,cn.a,ndofe);    //  transformation of displacement vector  long transf = Mt->locsystems (nodes);  if (transf>0){    allocv (ndofe,aux);    allocm (ndofe,ndofe,tmat);    transf_matrix (nodes,tmat);    //locglobtransf (aux,r,tmat);    lgvectortransf (aux,r,tmat);    copyv (aux,r);    destrv (aux);    destrm (tmat);  }  mainip_strains (lcid,eid,0,0,x,y,r);  }/**   function computes strains in main integration points of element      @param lcid - load case id   @param eid - element id   @param ri - row index   @param ci - column index   10.5.2002*/void planeelemqt::mainip_strains (long lcid,long eid,long ri,long ci,vector &x,vector &y,vector &r){  long i,ii,ipp;  double jac;  vector gp1,gp2,w,eps;  matrix gm;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -