⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 axisymlq-nb3.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
📖 第 1 页 / 共 3 页
字号:
#include "axisymlq.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "element.h"#include "node.h"#include "loadcase.h"#include "intpoints.h"#include <math.h>#include <stdlib.h>axisymlq::axisymlq (void){  long i,j;    nne=4;  ndofe=8;  tncomp=4;  napfun=2;  ned=4;  nned=2;  intordmm=3;  intordb=2;  ssst=axisymm;  nb=3;  ncomp = new long [nb];  ncomp[0]=2;  ncomp[1]=1;  ncomp[2]=1;  cncomp = new long [nb];  cncomp[0]=0;  cncomp[1]=2;  cncomp[2]=3;      nip = new long* [nb];  intordsm = new long* [nb];  for (i=0;i<nb;i++){    nip[i] = new long [nb];    intordsm[i] = new long [nb];  }  nip[0][0]=4;  nip[0][1]=4;  nip[0][2]=0;  nip[1][0]=4;  nip[1][1]=4;  nip[1][2]=0;  nip[2][0]=0;  nip[2][1]=0;  nip[2][2]=1;    intordsm[0][0]=2;  intordsm[0][1]=2;  intordsm[0][2]=0;  intordsm[1][0]=2;  intordsm[1][1]=2;  intordsm[1][2]=0;  intordsm[2][0]=0;  intordsm[2][1]=0;  intordsm[2][2]=1;  tnip=0;  for (i=0;i<nb;i++){    for (j=0;j<nb;j++){      tnip+=nip[i][j];    }  }}axisymlq::~axisymlq (void){  long i;    for (i=0;i<nb;i++){    delete [] intordsm[i];  }  delete intordsm;    delete [] cncomp;  delete [] ncomp;}void axisymlq::eleminit (long eid){  long ii,jj;  Mt->elements[eid].nb=nb;  Mt->elements[eid].intordsm = new long* [nb];  Mt->elements[eid].nip = new long* [nb];  for (ii=0;ii<nb;ii++){    Mt->elements[eid].intordsm[ii] = new long [nb];    Mt->elements[eid].nip[ii] = new long [nb];    for (jj=0;jj<nb;jj++){      Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj];      Mt->elements[eid].nip[ii][jj]=nip[ii][jj];    }  }}/**   function approximates function defined by nodal values      @param xi,eta - coordinates on element   @param nodval - nodal values   */double axisymlq::approx (double xi,double eta,vector &nodval){  double f;  vector bf(nne);    bf_lin_4_2d (bf.a,xi,eta);    scprd (bf,nodval,f);  return f;}/**   function returns matrix of approximation functions      @param n - matrix of approximation functions   @param xi,eta - natural coordinates      9.7.2001*/void axisymlq::bf_matrix (matrix &n,double xi,double eta){  long i,j,k;  vector bf(nne);    fillm (0.0,n);  bf_lin_4_2d (bf.a,xi,eta);    j=0;  k=1;  for (i=0;i<nne;i++){    n[0][j]=bf[i];    n[1][k]=bf[i];    j+=2;  k+=2;  }}/**   function assembles geometric matrix      epsilon_x = du/dx   epsilon_y = dv/dy   epsilon_fi = u/r   epsilon_xy = du/dy + dv/dx      @param gm - geometric matrix   @param ri - block index   @param x,y - arrays of node coordinates   @param xi,eta - natural coordinates   @param jac - jacobian      8.12.2001*/void axisymlq::geom_matrix (matrix &gm,vector &x,vector &y,double xi,double eta,double &jac){  long i,i1,i2;  double r;  vector bf(nne),dx(nne),dy(nne);    dx_bf_lin_4_2d (dx.a,eta);  dy_bf_lin_4_2d (dy.a,xi);  bf_lin_4_2d (bf.a,xi,eta);  derivatives_2d (dx,dy,jac,x,y,xi,eta);    r = approx (xi,eta,x);  if (fabs(r)<Mp->zero){    fprintf (stderr,"\n\n radius is equal %e in function axisymlq::geom_matrix_block (%s, line %d)",r,__FILE__,__LINE__);  }    fillm (0.0,gm);    i1=0;  i2=1;  for (i=0;i<nne;i++){    gm[0][i1]=dx[i];    gm[1][i2]=dy[i];    gm[2][i1]=bf[i]/r;    gm[3][i1]=dy[i];    gm[3][i2]=dx[i];    i1+=2;  i2+=2;  }}/**   function assembles part of geometric matrix      epsilon_x = du/dx   epsilon_y = dv/dy   epsilon_fi = u/r   epsilon_xy = du/dy + dv/dx      @param gm - geometric matrix   @param ri - block index   @param x,y - arrays of node coordinates   @param xi,eta - natural coordinates   @param jac - jacobian      8.12.2001*/void axisymlq::geom_matrix_block (matrix &gm,long ri,vector &x,vector &y,double xi,double eta,double &jac){  long i,i1,i2;  double r;  vector bf(nne),dx(nne),dy(nne);    dx_bf_lin_4_2d (dx.a,eta);  dy_bf_lin_4_2d (dy.a,xi);  bf_lin_4_2d (bf.a,xi,eta);  derivatives_2d (dx,dy,jac,x,y,xi,eta);    r = approx (xi,eta,x);  if (fabs(r)<Mp->zero){    fprintf (stderr,"\n\n radius is equal %e in function axisymlq::geom_matrix_block (%s, line %d)",r,__FILE__,__LINE__);  }    fillm (0.0,gm);    if (ri==0){    i1=0;  i2=1;    for (i=0;i<nne;i++){      gm[0][i1]=dx[i];      gm[1][i2]=dy[i];      i1+=2;  i2+=2;    }  }  if (ri==1){    i1=0;    for (i=0;i<nne;i++){      gm[0][i1]=bf[i]/r;      i1+=2;    }  }  if (ri==2){    i1=0;  i2=1;    for (i=0;i<nne;i++){      gm[0][i1]=dy[i];      gm[0][i2]=dx[i];      i1+=2;  i2+=2;    }  }  }/**   function extracts blocks from stiffness matrix of the material      @param ri,ci - row and column indices   @param d - stiffness matrix of material   @param dd - required block from stiffness matrix of material      10.5.2002*/void axisymlq::dmatblock (long ri,long ci,matrix &d, matrix &dd){  fillm (0.0,dd);  if (ri==0 && ci==0){    dd[0][0]=d[0][0];  dd[0][1]=d[0][1];    dd[1][0]=d[1][0];  dd[1][1]=d[1][1];  }  if (ri==0 && ci==1){    dd[0][0]=d[0][2];    dd[1][0]=d[1][2];  }  if (ri==0 && ci==2){    dd[0][0]=d[0][3];    dd[1][0]=d[1][3];  }    if (ri==1 && ci==0){    dd[0][0]=d[2][0];  dd[0][1]=d[2][1];  }  if (ri==1 && ci==1){    dd[0][0]=d[2][2];  }  if (ri==1 && ci==2){    dd[0][0]=d[2][3];  }    if (ri==2 && ci==0){    dd[0][0]=d[3][0];  dd[0][1]=d[3][1];  }  if (ri==2 && ci==1){    dd[0][0]=d[3][2];  }  if (ri==2 && ci==2){    dd[0][0]=d[3][3];  }}/**   nutno otestovat! pak je mozne smazat tuto hlasku      transformation matrix x_g = T x_l*/void axisymlq::transf_matrix (ivector &nodes,matrix &tmat){  long i,n,m;  fillm (0.0,tmat);  n=nodes.n;  m=tmat.m;  for (i=0;i<m;i++){    tmat[i][i]=1.0;  }    for (i=0;i<n;i++){    if (Mt->nodes[nodes[i]].transf>0){      tmat[i*2][i*2]   = Mt->nodes[nodes[i]].e1[0];    tmat[i*2][i*2+1]   = Mt->nodes[nodes[i]].e2[0];      tmat[i*2+1][i*2] = Mt->nodes[nodes[i]].e1[1];    tmat[i*2+1][i*2+1] = Mt->nodes[nodes[i]].e2[1];    }  }}/**   function computes stiffness matrix of axisymmetric quadrilateral   finite element with bilinear approximation functions      @param eid - element id   @param ri,ci - row and column indices   @param sm - stiffness matrix   8.12.2001*/void axisymlq::stiffness_matrix (long eid,long ri,long ci,matrix &sm){  long i,j,ii,jj,ipp,transf;  double xi,eta,jac,r;  ivector nodes(nne);  vector x(nne),y(nne),w,gp;  matrix gmr,gmc,d(tncomp,tncomp),dd;    Mt->give_elemnodes (eid,nodes);  Mt->give_node_coord2d (x,y,eid);    fillm (0.0,sm);    for (ii=0;ii<nb;ii++){    allocm (ncomp[ii],ndofe,gmr);    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;      allocv (intordsm[ii][jj],w);      allocv (intordsm[ii][jj],gp);            allocm (ncomp[jj],ndofe,gmc);      allocm (ncomp[ii],ncomp[jj],dd);            gauss_points (gp.a,w.a,intordsm[ii][jj]);            ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];            for (i=0;i<intordsm[ii][jj];i++){	xi=gp[i];	for (j=0;j<intordsm[ii][jj];j++){	  eta=gp[j];	  	  //  geometric matrix	  geom_matrix_block (gmr,ii,x,y,xi,eta,jac);	  geom_matrix_block (gmc,jj,x,y,xi,eta,jac);	  	  //  matrix of stiffness of the material	  Mm->matstiff (d,ipp);	  dmatblock (ii,jj,d,dd);	  	  r = approx (xi,eta,x);	  jac*=w[i]*w[j]*r;	  	  //  contribution to the stiffness matrix of the element	  bdbjac (sm,gmr,dd,gmc,jac);	  	  ipp++;	}      }            destrm (dd);  destrm (gmc);  destrv (gp);  destrv (w);    }    destrm (gmr);  }    //  transformation of stiffness matrix  transf = Mt->locsystems (nodes);  if (transf>0){    matrix tmat (ndofe,ndofe);    transf_matrix (nodes,tmat);    glmatrixtransf (sm,tmat);  }}/**   function computes resulting stiffness matrix of element      @param eid - element id   @param sm - stiffness matrix      10.5.2002*/void axisymlq::res_stiffness_matrix (long eid,matrix &sm){  stiffness_matrix (eid,0,0,sm);}/**   function computes mass matrix of the rectangular axisymmetric   finite element with bilinear approximation functions      @param eid - number of element   @param mm - mass matrix   24.6.2001*/void axisymlq::mass_matrix (long eid,matrix &mm){  long i,j;  double jac,xi,eta,rho,r;  ivector nodes(nne);  vector x(nne),y(nne),w(intordmm),gp(intordmm),t(nne),dens(nne);  matrix n(napfun,ndofe);    Mt->give_elemnodes (eid,nodes);  Mc->give_density (eid,nodes,dens);  Mt->give_node_coord2d (x,y,eid);  gauss_points (gp.a,w.a,intordmm);    fillm (0.0,mm);  for (i=0;i<intordmm;i++){    xi=gp[i];    for (j=0;j<intordmm;j++){      eta=gp[j];      jac_2d (jac,x,y,xi,eta);      bf_matrix (n,xi,eta);            rho = approx (xi,eta,dens);      r = approx (xi,eta,x);      jac*=w[i]*w[j]*rho*r;            nnj (mm.a,n.a,jac,n.m,n.n);    }  }  }void axisymlq::res_mainip_strains (long lcid,long eid){  long i;  vector x(nne),y(nne),r(ndofe),aux;  ivector nodes(nne),cn(ndofe);  matrix tmat;  Mt->give_elemnodes (eid,nodes);  Mt->give_node_coord2d (x,y,eid);  Mt->give_code_numbers (eid,cn.a);  eldispl (lcid,r.a,cn.a,ndofe);    //  transformation of displacement vector  long transf = Mt->locsystems (nodes);  if (transf>0){    allocv (ndofe,aux);    allocm (ndofe,ndofe,tmat);    transf_matrix (nodes,tmat);    locglobtransf (aux,r,tmat);    copyv (aux,r);    destrv (aux);    destrm (tmat);  }    for (i=0;i<nb;i++){    mainip_strains (lcid,eid,0,0,i,x,y,r);  }}/**   function computes strains in main integration points of element      @param lcid - load case id   @param eid - element id   @param ri - row index   @param ci - column index      10.5.2002*/void axisymlq::mainip_strains (long lcid,long eid,long ri,long ci,long ii,vector &x,vector &y,vector &r){  long i,j,ipp;  double xi,eta,jac;  vector gp,w,eps;  matrix gm;    allocv (intordsm[ii][ii],gp);  allocv (intordsm[ii][ii],w);  allocv (ncomp[ii],eps);  allocm (ncomp[ii],ndofe,gm);    gauss_points (gp.a,w.a,intordsm[ii][ii]);    ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];  for (i=0;i<intordsm[ii][ii];i++){    xi=gp[i];    for (j=0;j<intordsm[ii][ii];j++){      eta=gp[j];            geom_matrix_block (gm,ii,x,y,xi,eta,jac);      mxv (gm,r,eps);            Mm->storestrain (lcid,ipp,cncomp[ii],eps);      ipp++;    }  }    destrm (gm);  destrv (eps);  destrv (w);  destrv (gp);}/**   function computes strains in nodes of element      @param lcid - load case id   @param eid - element id      10.5.2002*/void axisymlq::nod_strains (long lcid,long eid,long ri,long ci){  long i,j,ii,ipp;  double xi,eta,*lsm,*lhs,*rhs;  vector x(nne),y(nne),nxi(nne),neta(nne),r(ndofe),gp,w,eps,aux,natcoord(2);  ivector nodes(nne),cn(ndofe);  matrix tmat;  lsm = new double [9];  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -