📄 axisymlq-nb3.cpp
字号:
#include "axisymlq.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "element.h"#include "node.h"#include "loadcase.h"#include "intpoints.h"#include <math.h>#include <stdlib.h>axisymlq::axisymlq (void){ long i,j; nne=4; ndofe=8; tncomp=4; napfun=2; ned=4; nned=2; intordmm=3; intordb=2; ssst=axisymm; nb=3; ncomp = new long [nb]; ncomp[0]=2; ncomp[1]=1; ncomp[2]=1; cncomp = new long [nb]; cncomp[0]=0; cncomp[1]=2; cncomp[2]=3; nip = new long* [nb]; intordsm = new long* [nb]; for (i=0;i<nb;i++){ nip[i] = new long [nb]; intordsm[i] = new long [nb]; } nip[0][0]=4; nip[0][1]=4; nip[0][2]=0; nip[1][0]=4; nip[1][1]=4; nip[1][2]=0; nip[2][0]=0; nip[2][1]=0; nip[2][2]=1; intordsm[0][0]=2; intordsm[0][1]=2; intordsm[0][2]=0; intordsm[1][0]=2; intordsm[1][1]=2; intordsm[1][2]=0; intordsm[2][0]=0; intordsm[2][1]=0; intordsm[2][2]=1; tnip=0; for (i=0;i<nb;i++){ for (j=0;j<nb;j++){ tnip+=nip[i][j]; } }}axisymlq::~axisymlq (void){ long i; for (i=0;i<nb;i++){ delete [] intordsm[i]; } delete intordsm; delete [] cncomp; delete [] ncomp;}void axisymlq::eleminit (long eid){ long ii,jj; Mt->elements[eid].nb=nb; Mt->elements[eid].intordsm = new long* [nb]; Mt->elements[eid].nip = new long* [nb]; for (ii=0;ii<nb;ii++){ Mt->elements[eid].intordsm[ii] = new long [nb]; Mt->elements[eid].nip[ii] = new long [nb]; for (jj=0;jj<nb;jj++){ Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj]; Mt->elements[eid].nip[ii][jj]=nip[ii][jj]; } }}/** function approximates function defined by nodal values @param xi,eta - coordinates on element @param nodval - nodal values */double axisymlq::approx (double xi,double eta,vector &nodval){ double f; vector bf(nne); bf_lin_4_2d (bf.a,xi,eta); scprd (bf,nodval,f); return f;}/** function returns matrix of approximation functions @param n - matrix of approximation functions @param xi,eta - natural coordinates 9.7.2001*/void axisymlq::bf_matrix (matrix &n,double xi,double eta){ long i,j,k; vector bf(nne); fillm (0.0,n); bf_lin_4_2d (bf.a,xi,eta); j=0; k=1; for (i=0;i<nne;i++){ n[0][j]=bf[i]; n[1][k]=bf[i]; j+=2; k+=2; }}/** function assembles geometric matrix epsilon_x = du/dx epsilon_y = dv/dy epsilon_fi = u/r epsilon_xy = du/dy + dv/dx @param gm - geometric matrix @param ri - block index @param x,y - arrays of node coordinates @param xi,eta - natural coordinates @param jac - jacobian 8.12.2001*/void axisymlq::geom_matrix (matrix &gm,vector &x,vector &y,double xi,double eta,double &jac){ long i,i1,i2; double r; vector bf(nne),dx(nne),dy(nne); dx_bf_lin_4_2d (dx.a,eta); dy_bf_lin_4_2d (dy.a,xi); bf_lin_4_2d (bf.a,xi,eta); derivatives_2d (dx,dy,jac,x,y,xi,eta); r = approx (xi,eta,x); if (fabs(r)<Mp->zero){ fprintf (stderr,"\n\n radius is equal %e in function axisymlq::geom_matrix_block (%s, line %d)",r,__FILE__,__LINE__); } fillm (0.0,gm); i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dx[i]; gm[1][i2]=dy[i]; gm[2][i1]=bf[i]/r; gm[3][i1]=dy[i]; gm[3][i2]=dx[i]; i1+=2; i2+=2; }}/** function assembles part of geometric matrix epsilon_x = du/dx epsilon_y = dv/dy epsilon_fi = u/r epsilon_xy = du/dy + dv/dx @param gm - geometric matrix @param ri - block index @param x,y - arrays of node coordinates @param xi,eta - natural coordinates @param jac - jacobian 8.12.2001*/void axisymlq::geom_matrix_block (matrix &gm,long ri,vector &x,vector &y,double xi,double eta,double &jac){ long i,i1,i2; double r; vector bf(nne),dx(nne),dy(nne); dx_bf_lin_4_2d (dx.a,eta); dy_bf_lin_4_2d (dy.a,xi); bf_lin_4_2d (bf.a,xi,eta); derivatives_2d (dx,dy,jac,x,y,xi,eta); r = approx (xi,eta,x); if (fabs(r)<Mp->zero){ fprintf (stderr,"\n\n radius is equal %e in function axisymlq::geom_matrix_block (%s, line %d)",r,__FILE__,__LINE__); } fillm (0.0,gm); if (ri==0){ i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dx[i]; gm[1][i2]=dy[i]; i1+=2; i2+=2; } } if (ri==1){ i1=0; for (i=0;i<nne;i++){ gm[0][i1]=bf[i]/r; i1+=2; } } if (ri==2){ i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dy[i]; gm[0][i2]=dx[i]; i1+=2; i2+=2; } } }/** function extracts blocks from stiffness matrix of the material @param ri,ci - row and column indices @param d - stiffness matrix of material @param dd - required block from stiffness matrix of material 10.5.2002*/void axisymlq::dmatblock (long ri,long ci,matrix &d, matrix &dd){ fillm (0.0,dd); if (ri==0 && ci==0){ dd[0][0]=d[0][0]; dd[0][1]=d[0][1]; dd[1][0]=d[1][0]; dd[1][1]=d[1][1]; } if (ri==0 && ci==1){ dd[0][0]=d[0][2]; dd[1][0]=d[1][2]; } if (ri==0 && ci==2){ dd[0][0]=d[0][3]; dd[1][0]=d[1][3]; } if (ri==1 && ci==0){ dd[0][0]=d[2][0]; dd[0][1]=d[2][1]; } if (ri==1 && ci==1){ dd[0][0]=d[2][2]; } if (ri==1 && ci==2){ dd[0][0]=d[2][3]; } if (ri==2 && ci==0){ dd[0][0]=d[3][0]; dd[0][1]=d[3][1]; } if (ri==2 && ci==1){ dd[0][0]=d[3][2]; } if (ri==2 && ci==2){ dd[0][0]=d[3][3]; }}/** nutno otestovat! pak je mozne smazat tuto hlasku transformation matrix x_g = T x_l*/void axisymlq::transf_matrix (ivector &nodes,matrix &tmat){ long i,n,m; fillm (0.0,tmat); n=nodes.n; m=tmat.m; for (i=0;i<m;i++){ tmat[i][i]=1.0; } for (i=0;i<n;i++){ if (Mt->nodes[nodes[i]].transf>0){ tmat[i*2][i*2] = Mt->nodes[nodes[i]].e1[0]; tmat[i*2][i*2+1] = Mt->nodes[nodes[i]].e2[0]; tmat[i*2+1][i*2] = Mt->nodes[nodes[i]].e1[1]; tmat[i*2+1][i*2+1] = Mt->nodes[nodes[i]].e2[1]; } }}/** function computes stiffness matrix of axisymmetric quadrilateral finite element with bilinear approximation functions @param eid - element id @param ri,ci - row and column indices @param sm - stiffness matrix 8.12.2001*/void axisymlq::stiffness_matrix (long eid,long ri,long ci,matrix &sm){ long i,j,ii,jj,ipp,transf; double xi,eta,jac,r; ivector nodes(nne); vector x(nne),y(nne),w,gp; matrix gmr,gmc,d(tncomp,tncomp),dd; Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); fillm (0.0,sm); for (ii=0;ii<nb;ii++){ allocm (ncomp[ii],ndofe,gmr); for (jj=0;jj<nb;jj++){ if (intordsm[ii][jj]==0) continue; allocv (intordsm[ii][jj],w); allocv (intordsm[ii][jj],gp); allocm (ncomp[jj],ndofe,gmc); allocm (ncomp[ii],ncomp[jj],dd); gauss_points (gp.a,w.a,intordsm[ii][jj]); ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; for (i=0;i<intordsm[ii][jj];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][jj];j++){ eta=gp[j]; // geometric matrix geom_matrix_block (gmr,ii,x,y,xi,eta,jac); geom_matrix_block (gmc,jj,x,y,xi,eta,jac); // matrix of stiffness of the material Mm->matstiff (d,ipp); dmatblock (ii,jj,d,dd); r = approx (xi,eta,x); jac*=w[i]*w[j]*r; // contribution to the stiffness matrix of the element bdbjac (sm,gmr,dd,gmc,jac); ipp++; } } destrm (dd); destrm (gmc); destrv (gp); destrv (w); } destrm (gmr); } // transformation of stiffness matrix transf = Mt->locsystems (nodes); if (transf>0){ matrix tmat (ndofe,ndofe); transf_matrix (nodes,tmat); glmatrixtransf (sm,tmat); }}/** function computes resulting stiffness matrix of element @param eid - element id @param sm - stiffness matrix 10.5.2002*/void axisymlq::res_stiffness_matrix (long eid,matrix &sm){ stiffness_matrix (eid,0,0,sm);}/** function computes mass matrix of the rectangular axisymmetric finite element with bilinear approximation functions @param eid - number of element @param mm - mass matrix 24.6.2001*/void axisymlq::mass_matrix (long eid,matrix &mm){ long i,j; double jac,xi,eta,rho,r; ivector nodes(nne); vector x(nne),y(nne),w(intordmm),gp(intordmm),t(nne),dens(nne); matrix n(napfun,ndofe); Mt->give_elemnodes (eid,nodes); Mc->give_density (eid,nodes,dens); Mt->give_node_coord2d (x,y,eid); gauss_points (gp.a,w.a,intordmm); fillm (0.0,mm); for (i=0;i<intordmm;i++){ xi=gp[i]; for (j=0;j<intordmm;j++){ eta=gp[j]; jac_2d (jac,x,y,xi,eta); bf_matrix (n,xi,eta); rho = approx (xi,eta,dens); r = approx (xi,eta,x); jac*=w[i]*w[j]*rho*r; nnj (mm.a,n.a,jac,n.m,n.n); } } }void axisymlq::res_mainip_strains (long lcid,long eid){ long i; vector x(nne),y(nne),r(ndofe),aux; ivector nodes(nne),cn(ndofe); matrix tmat; Mt->give_elemnodes (eid,nodes); Mt->give_node_coord2d (x,y,eid); Mt->give_code_numbers (eid,cn.a); eldispl (lcid,r.a,cn.a,ndofe); // transformation of displacement vector long transf = Mt->locsystems (nodes); if (transf>0){ allocv (ndofe,aux); allocm (ndofe,ndofe,tmat); transf_matrix (nodes,tmat); locglobtransf (aux,r,tmat); copyv (aux,r); destrv (aux); destrm (tmat); } for (i=0;i<nb;i++){ mainip_strains (lcid,eid,0,0,i,x,y,r); }}/** function computes strains in main integration points of element @param lcid - load case id @param eid - element id @param ri - row index @param ci - column index 10.5.2002*/void axisymlq::mainip_strains (long lcid,long eid,long ri,long ci,long ii,vector &x,vector &y,vector &r){ long i,j,ipp; double xi,eta,jac; vector gp,w,eps; matrix gm; allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocv (ncomp[ii],eps); allocm (ncomp[ii],ndofe,gm); gauss_points (gp.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; geom_matrix_block (gm,ii,x,y,xi,eta,jac); mxv (gm,r,eps); Mm->storestrain (lcid,ipp,cncomp[ii],eps); ipp++; } } destrm (gm); destrv (eps); destrv (w); destrv (gp);}/** function computes strains in nodes of element @param lcid - load case id @param eid - element id 10.5.2002*/void axisymlq::nod_strains (long lcid,long eid,long ri,long ci){ long i,j,ii,ipp; double xi,eta,*lsm,*lhs,*rhs; vector x(nne),y(nne),nxi(nne),neta(nne),r(ndofe),gp,w,eps,aux,natcoord(2); ivector nodes(nne),cn(ndofe); matrix tmat; lsm = new double [9];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -