⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 plelemqq.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
📖 第 1 页 / 共 3 页
字号:
#include "plelemqq.h"#include "plelemlq.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "adaptivity.h"#include "gadaptivity.h"#include "node.h"#include "intpoints.h"#include "element.h"#include "loadcase.h"#include <stdlib.h>#include <math.h>planeelemqq::planeelemqq (void){  long i,j;    //  number nodes on element  nne=8;  //  number of DOFs on element  ndofe=16;  //  number of strain/stress components  tncomp=3;  //  number of functions approximated  napfun=2;  //  order of numerical integration of mass matrix  intordmm=4;  //  number of edges on element  ned=4;  //  number of nodes on one edge  nned=3;  //  order of numerical integration on element edges (boundaries)  intordb=3;    //  number of blocks (parts of geometric matrix)  nb=1;    //  number of strain/stress components  ncomp = new long [nb];  ncomp[0]=3;    //  cumulative number of components approximated  cncomp = new long [nb];  cncomp[0]=0;    //  number of integration points  //  order of numerical integration of stiffness matrix  nip = new long* [nb];  intordsm = new long* [nb];  for (i=0;i<nb;i++){    nip[i] = new long [nb];    intordsm[i] = new long [nb];  }    nip[0][0]=9;    //  total number of integration points  tnip=0;  for (i=0;i<nb;i++){    for (j=0;j<nb;j++){      tnip+=nip[i][j];    }  }    intordsm[0][0]=3;}planeelemqq::~planeelemqq (void){  long i;    for (i=0;i<nb;i++){    delete [] nip[i];    delete [] intordsm[i];  }  delete [] nip;  delete [] intordsm;    delete [] cncomp;  delete [] ncomp;}void planeelemqq::eleminit (long eid){  long ii,jj;  Mt->elements[eid].nb=nb;  Mt->elements[eid].intordsm = new long* [nb];  Mt->elements[eid].nip = new long* [nb];  for (ii=0;ii<nb;ii++){    Mt->elements[eid].intordsm[ii] = new long [nb];    Mt->elements[eid].nip[ii] = new long [nb];    for (jj=0;jj<nb;jj++){      Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj];      Mt->elements[eid].nip[ii][jj]=nip[ii][jj];    }  }}/**   procedure approximates function defined by nodal values      @param xi,eta - natural coordinates on element   @param nodval - nodal values      JK*/double planeelemqq::approx (double xi,double eta,vector &nodval){  double f;  vector bf(nne);    bf_quad_4_2d (bf.a,xi,eta);    scprd (bf,nodval,f);    return f;}/**   function returns %matrix of approximation functions      @param n - %matrix of approximation functions   @param xi,eta - natural coordinates      JK, 25.8.2001*/void planeelemqq::bf_matrix (matrix &n,double xi,double eta){  long i,j,k;  vector bf(nne);    fillm (0.0,n);    bf_quad_4_2d (bf.a,xi,eta);    j=0;  k=1;  for (i=0;i<nne;i++){    n[0][j]=bf[i];    n[1][k]=bf[i];    j+=2;  k+=2;  }}/**   function assembles geometric %matrix (strain-displacement %matrix)      @param gm - geometric %matrix   @param x,y - array containing node coordinates   @param xi,eta - natural coordinates   @param jac - Jacobian      JK, 9.7.2001*/void planeelemqq::geom_matrix (matrix &gm,vector &x,vector &y,double xi,double eta,double &jac){  long i,i1,i2;  vector dx(nne),dy(nne);    dx_bf_quad_4_2d (dx.a,xi,eta);  dy_bf_quad_4_2d (dy.a,xi,eta);    derivatives_2d (dx,dy,jac,x,y,xi,eta);    fillm (0.0,gm);    i1=0;  i2=1;  for (i=0;i<nne;i++){    gm[0][i1]=dx[i];    gm[1][i2]=dy[i];    gm[2][i1]=dy[i];    gm[2][i2]=dx[i];    i1+=2;  i2+=2;  }}/**   function assembles transformation %matrix from local nodal coordinate   system to the global coordinate system x_g = T x_l      @param nodes - element nodes   @param tmat - transformation %matrix      JK,*/void planeelemqq::transf_matrix (ivector &nodes,matrix &tmat){  long i,n,m;    fillm (0.0,tmat);    n=nodes.n;  m=tmat.m;  for (i=0;i<m;i++){    tmat[i][i]=1.0;  }    for (i=0;i<n;i++){    if (Mt->nodes[nodes[i]].transf>0){      tmat[i*2][i*2]   = Mt->nodes[nodes[i]].e1[0];    tmat[i*2][i*2+1]   = Mt->nodes[nodes[i]].e2[0];      tmat[i*2+1][i*2] = Mt->nodes[nodes[i]].e1[1];    tmat[i*2+1][i*2+1] = Mt->nodes[nodes[i]].e2[1];    }  }}/**   function computes stiffness %matrix of plane stress rectangular   finite element with biquadratic approximation functions      this function is used in plane stress/strain elements (function is called   by function res_stiffness_matrix) and shell elements   @param eid - number of element   @param ri,ci - row and column indices   @param sm - stiffness %matrix   @param x,y - node coordinates      JK, 25.8.2001*/void planeelemqq::stiffness_matrix (long eid,long ri,long ci,matrix &sm,vector &x,vector &y){  long i,j,ii,jj,ipp;  double xi,eta,jac,thick;  ivector nodes(nne);  vector w,gp,t(nne);  matrix d(tncomp,tncomp),gm(tncomp,ndofe);    //  element nodes  Mt->give_elemnodes (eid,nodes);  //  thickness of the element  Mc->give_thickness (eid,nodes,t);    fillm (0.0,sm);    for (ii=0;ii<nb;ii++){    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;      allocv (intordsm[ii][jj],w);      allocv (intordsm[ii][jj],gp);      gauss_points (gp.a,w.a,intordsm[ii][jj]);            ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];            for (i=0;i<intordsm[ii][jj];i++){	xi=gp[i];	for (j=0;j<intordsm[ii][jj];j++){	  eta=gp[j];	  	  //  geometric matrix	  geom_matrix (gm,x,y,xi,eta,jac);	  	  //  matrix of material stiffness	  Mm->matstiff (d,ipp);	  	  thick = approx (xi,eta,t);	  	  jac*=thick*w[i]*w[j];	  	  //  contribution to the stiffness matrix of the element	  bdbj (sm.a,gm.a,d.a,jac,gm.m,gm.n);	  	  ipp++;	}      }      destrv (gp);  destrv (w);    }  }  }/**   function assembles stiffness %matrix of plane stress rectangular   finite element with biquadratic approximation functions      @param eid - element id   @param sm - stiffness %matrix      JK*/void planeelemqq::res_stiffness_matrix (long eid,matrix &sm){  long transf;  ivector nodes(nne);  vector x(nne),y(nne);  matrix tmat (ndofe,ndofe);    Mt->give_node_coord2d (x,y,eid);    stiffness_matrix (eid,0,0,sm,x,y);  //  transformation of stiffness matrix  //  (in the case of nodal coordinate systems)  Mt->give_elemnodes (eid,nodes);  transf = Mt->locsystems (nodes);  if (transf>0){    transf_matrix (nodes,tmat);    glmatrixtransf (sm,tmat);  }}/**   function computes mass %matrix of the plane stress rectangular   finite element with biquadratic approximation functions      this function is used in plane stress/strain elements (function is called   by function res_mass_matrix) and shell elements   @param eid - number of element   @param mm - mass %matrix   @param x,y - node coordinates      JK, 25.8.2001*/void planeelemqq::mass_matrix (long eid,matrix &mm,vector &x,vector &y){  long i,j;  double jac,xi,eta,w1,w2,thick,rho;  ivector nodes(nne);  vector w(intordmm),gp(intordmm),t(nne),dens(nne);  matrix n(napfun,ndofe);    //  element nodes  Mt->give_elemnodes (eid,nodes);  //  thickness of the element  Mc->give_thickness (eid,nodes,t);  //  density of material (defined at nodes or on element)  Mc->give_density (eid,nodes,dens);  gauss_points (gp.a,w.a,intordmm);    fillm (0.0,mm);  for (i=0;i<intordmm;i++){    xi=gp[i];  w1=w[i];    for (j=0;j<intordmm;j++){      eta=gp[j];  w2=w[i];      jac_2d (jac,x,y,xi,eta);            //  matrix of approximation functions      bf_matrix (n,xi,eta);            //  thickness at integration point      thick = approx (xi,eta,t);      //  density at integration point      rho = approx (xi,eta,dens);      jac*=w1*w2*thick*rho;            nnj (mm.a,n.a,jac,n.m,n.n);    }  }  }/**   function assembles mass %matrix of plane stress rectangular   finite element with biquadratic approximation functions      @param eid - element id   @param mm - mass %matrix      JK*/void planeelemqq::res_mass_matrix (long eid,matrix &mm){  long transf;  ivector nodes(nne);  vector x(nne),y(nne);    Mt->give_node_coord2d (x,y,eid);  mass_matrix (eid,mm,x,y);    //  transformation of mass matrix  //  (in the case of nodal coordinate systems)  Mt->give_elemnodes (eid,nodes);  transf = Mt->locsystems (nodes);  if (transf>0){    matrix tmat (ndofe,ndofe);    transf_matrix (nodes,tmat);    glmatrixtransf (mm,tmat);  }}/**   function computes load %matrix of the plane stress rectangular   finite element with biquadratic approximation functions   load vector is obtained after premultiplying load %matrix   by nodal load values      this function is used in plane stress/strain elements (function is called   by function res_load_matrix) and shell elements   @param eid - number of element   @param lm - load %matrix   @param x,y - node coordinates   JK, 25.8.2001*/void planeelemqq::load_matrix (long eid,matrix &lm,vector &x,vector &y){  long i,j;  double jac,xi,eta,w1,w2,thick;  ivector nodes(nne);  vector w(intordmm),gp(intordmm),t(nne);  matrix n(napfun,ndofe);    //  element nodes  Mt->give_elemnodes (eid,nodes);  //  thickness of the element  Mc->give_thickness (eid,nodes,t);  gauss_points (gp.a,w.a,intordmm);    fillm (0.0,lm);  for (i=0;i<intordmm;i++){    xi=gp[i];  w1=w[i];    for (j=0;j<intordmm;j++){      eta=gp[j];  w2=w[j];      jac_2d (jac,x,y,xi,eta);      //  matrix of approximation functions      bf_matrix (n,xi,eta);            //  thickness at integration point      thick = approx (xi,eta,t);      jac*=w1*w2*thick;            nnj (lm.a,n.a,jac,n.m,n.n);    }  }  }/**   function assembles load %matrix of plane stress rectangular   finite element with biquadratic approximation functions      @param eid - element id   @param lm - load %matrix      JK*/void planeelemqq::res_load_matrix (long eid,matrix &lm){  long transf;  ivector nodes(nne);  vector x(nne),y(nne);    Mt->give_node_coord2d (x,y,eid);  load_matrix (eid,lm,x,y);  //  transformation of load matrix  //  (in the case of nodal coordinate systems)  Mt->give_elemnodes (eid,nodes);  transf = Mt->locsystems (nodes);  if (transf>0){    matrix tmat (ndofe,ndofe);    transf_matrix (nodes,tmat);    glmatrixtransf (lm,tmat);  }}/**   function computes strains at integration points      @param lcid - load case id   @param eid - element id      JK, modified 23.11.2006*/void planeelemqq::res_ip_strains (long lcid,long eid){  long transf;  vector x(nne),y(nne),r(ndofe),aux(ndofe);  ivector cn(ndofe),nodes(nne);  matrix tmat(ndofe,ndofe);    Mt->give_node_coord2d (x,y,eid);  Mt->give_elemnodes (eid,nodes);  Mt->give_code_numbers (eid,cn.a);  eldispl (lcid,eid,r.a,cn.a,ndofe);    //  transformation of displacement vector  //  (in the case of nodal coordinate systems)  transf = Mt->locsystems (nodes);  if (transf>0){    transf_matrix (nodes,tmat);    lgvectortransf (aux,r,tmat);    copyv (aux,r);  }    ip_strains (lcid,eid,0,0,x,y,r);}/**   function computes strains at integration points of element      this function is used in plane stress/strain elements (function is called   by function res_ip_strains) and shell elements   @param lcid - load case id   @param eid - element id   @param ri - row index   @param ci - column index   @param x,y - node coordinates   @param r - nodal displacements      10.5.2002, JK, modified 23.11.2006*/void planeelemqq::ip_strains (long lcid,long eid,long ri,long ci,vector &x,vector &y,vector &r){  long i,j,ipp;  double xi,eta,jac;  vector gp,w,eps;  matrix gm;  allocv (intordsm[0][0],gp);  allocv (intordsm[0][0],w);  allocv (ncomp[0],eps);  allocm (ncomp[0],ndofe,gm);    gauss_points (gp.a,w.a,intordsm[0][0]);    ipp=Mt->elements[eid].ipp[ri][ci];  for (i=0;i<intordsm[0][0];i++){    xi=gp[i];    for (j=0;j<intordsm[0][0];j++){      eta=gp[j];            //  geometric matrix (strain-displacement matrix)      geom_matrix (gm,x,y,xi,eta,jac);      //  strain computation      mxv (gm,r,eps);            Mm->storestrain (lcid,ipp,eps);      ipp++;    }  }    destrm (gm);  destrv (eps);  destrv (w);  destrv (gp);}/**   function assembles strains at nodes of element   strains are obtained from the nearest integration points   @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices (default value is 0, nonzero values are used in shell elements)   10.5.2002*/void planeelemqq::nod_strains_ip (long lcid,long eid,long ri,long ci){  long i,j;  ivector ipnum(nne),nod(nne);  vector eps(tncomp);    //  numbers of integration points closest to nodes  nodipnum (eid,ri,ci,ipnum);    //  node numbers of the element  Mt->give_elemnodes (eid,nod);    for (i=0;i<nne;i++){    //  strains at the closest integration point    Mm->givestrain (lcid,ipnum[i],eps);        //  storage of strains to the node    j=nod[i];    Mt->nodes[j].storestrain (lcid,0,eps);  }  }/**   function computes strains at required position on elements   function possibly transforms strains to required coordinate systems      @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices      JK, 23.11.2006*/void planeelemqq::strains (long lcid,long eid,long ri,long ci){  vector coord,eps;    switch (Mm->stra.tape[eid]){  case nowhere:{    break;  }  case intpts:{    //res_ip_strains (lcid,eid,ri,ci);    break;  }  case enodes:{    nod_strains_ip (lcid,eid,ri,ci);    

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -