⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 plelemlq.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
📖 第 1 页 / 共 4 页
字号:
	  Mm->givestrain (lcid,ipp,cncomp[jj],eps);	  //  block of stiffness matrix of material	  dmatblock (ii,jj,d,dd);	  //  stress contributions	  mxv (dd,eps,auxsig);	  //  summation of contributions	  addv (auxsig,sig,sig);	  	  destrm (dd);  destrv (eps);	}		//  storage of block of stress	Mm->storestress (lcid,ipp,cncomp[ii],sig);		ipp++;      }    }        destrv (w);  destrv (gp);  destrv (auxsig);  destrv (sig);  }}/**   function computes stresses at nodes of element   @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices      10.5.2002*/void planeelemlq::nod_stresses_ip (long lcid,long eid,long ri,long ci){  long i,j,ipp;  ivector ipnum(nne),nod(nne);  vector sig(tncomp);    //  numbers of integration points closest to nodes  //  (function is from the file GEFEL/ordering.cpp)  ipp=Mt->elements[eid].ipp[ri][ci];  nodip_planelq (ipp,intordsm[0][0],ipnum);    //  node numbers of the element  Mt->give_elemnodes (eid,nod);    for (i=0;i<nne;i++){    //  stresses at the closest integration point    Mm->givestress (lcid,ipnum[i],sig);        //  storage of stresses to the node    j=nod[i];    Mt->nodes[j].storestress (lcid,0,sig);  }  }/**   function computes nodal stresses directly      @param lcid - load case id   @param eid - element id   @param stra - array for strain components      JK, 25.9.2004*/void planeelemlq::nod_stresses_comp (long lcid,long eid,long ri,long ci,double **stra,double **stre){  long i,j,ipp;  vector eps(tncomp),sig(tncomp);  matrix d(tncomp,tncomp);    //  number of the first integration point on the element  ipp=Mt->elements[eid].ipp[ri][ci];  //  stiffness matrix of the material  Mm->matstiff (d,ipp);    //  loop over nodes  for (i=0;i<nne;i++){    for (j=0;j<eps.n;j++){      eps[j]=stra[i][j];    }    mxv (d,eps,sig);    for (j=0;j<eps.n;j++){      stre[i][j]=sig[j];    }  }}void planeelemlq::stresses (long lcid,long eid,long ri,long ci){  long i,naep,ncp,sid;  vector coord,sig;    //  computation of blocks of stresses at integration points  res_ip_stresses (lcid,eid);      switch (Mm->stre.tape[eid]){  case nowhere:{    break;  }  case intpts:{    //allip_stresses (lcid,eid,ri,ci);    break;  }  case enodes:{    nod_stresses_ip (lcid,eid,ri,ci);    break;  }  case userdefined:{    //  number of auxiliary element points    naep = Mm->stre.give_naep (eid);    ncp = Mm->stre.give_ncomp (eid);    sid = Mm->stre.give_sid (eid);    allocv (ncp,sig);    allocv (2,coord);    for (i=0;i<naep;i++){      Mm->stre.give_aepcoord (sid,i,coord);      if (Mp->stressaver==0)	//appval (coord[0],coord[1],0,ncp,sig,stre);      if (Mp->stressaver==1)	//appstress (lcid,eid,coord[0],coord[1],0,ncp,sig);      Mm->stre.storevalues(lcid,eid,i,sig);    }    destrv (sig);    destrv (coord);    break;  }  default:{    fprintf (stderr,"\n\n unknown stress point is required in function planeelemlq::stresses (%s, line %d).\n",__FILE__,__LINE__);  }  }}/**   function computes other values in nodes of element   @param lcid - load case id   @param eid - element id      10.5.2002*/void planeelemlq::nod_eqother_ip (long lcid,long eid,long ri,long ci){  long i,j,ipp,ncompo;  ivector ipnum(nne),nod(nne);  vector eqother;    //  numbers of integration points closest to nodes  //  (function is from the file GEFEL/ordering.cpp)  ipp=Mt->elements[eid].ipp[ri][ci];  nodip_planelq (ipp,intordsm[0][0],ipnum);    //  node numbers of the element  Mt->give_elemnodes (eid,nod);    for (i=0;i<nne;i++){    ncompo = Mm->givencompeqother (ipnum[i],0);    allocv (ncompo,eqother);    Mm->giveeqother (ipnum[i],0,ncompo,eqother.a);        //  storage of strains to the node    j=nod[i];    Mt->nodes[j].storeother (lcid,0,ncompo,eqother);        destrv (eqother);  }}/**   function computes load %matrix of the plane stress rectangular   finite element with bilinear approximation functions   load vector is obtained after premultiplying load %matrix   by nodal load values      @param eid - number of element   @param lm - load %matrix   @param x,y - node coordinates      JK, 25.7.2001*/void planeelemlq::load_matrix (long eid,matrix &lm,vector &x,vector &y){  long i,j;  double jac,xi,eta,w1,w2,thick;  ivector nodes(nne);  vector w(intordmm),gp(intordmm),t(nne);  matrix n(napfun,ndofe);    Mt->give_elemnodes (eid,nodes);  Mc->give_thickness (eid,nodes,t);  gauss_points (gp.a,w.a,intordmm);    fillm (0.0,lm);    for (i=0;i<intordmm;i++){    xi=gp[i];  w1=w[i];    for (j=0;j<intordmm;j++){      eta=gp[j];  w2=w[j];      jac_2d (jac,x,y,xi,eta);      bf_matrix (n,xi,eta);            thick = approx (xi,eta,t);      jac*=w1*w2*thick;            nnj (lm.a,n.a,jac,n.m,n.n);    }  }  }/**   function computes load %matrix of the plane stress rectangular   finite element with bilinear approximation functions   load vector is obtained after premultiplying load %matrix   by nodal load values      @param eid - number of element   @param lm - load %matrix      JK, 25.7.2001*/void planeelemlq::res_load_matrix (long eid,matrix &lm){  long transf;  ivector nodes(nne);  vector x(nne),y(nne);    Mt->give_node_coord2d (x,y,eid);  load_matrix (eid,lm,x,y);  //  transformation of load matrix  //  (in the case of nodal coordinate systems)  Mt->give_elemnodes (eid,nodes);  transf = Mt->locsystems (nodes);  if (transf>0){    matrix tmat (ndofe,ndofe);    transf_matrix (nodes,tmat);    glmatrixtransf (lm,tmat);  }}/**   function computes correct stresses at integration points on element   @param lcid - number of load case   @param eid - element id   @param ri,ci - row and column indices      JK, 27.11.2006*/void planeelemlq::compute_nlstress (long lcid,long eid,long ri,long ci){  long i,j,ii,jj,ipp;    for (ii=0;ii<nb;ii++){    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;            ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];            for (i=0;i<intordsm[ii][jj];i++){	for (j=0;j<intordsm[ii][jj];j++){	  	  //  computation of correct stresses	  if (Mp->strcomp==1)	    Mm->computenlstresses (ipp);	  	  ipp++;	}      }    }  }}/**   function computes nonlocal correct stresses at integration points on element      @param lcid - number of load case   @param eid - element id   @param ri,ci - row and column indices      JK, 27.11.2006*/void planeelemlq::compute_nonloc_nlstress (long lcid,long eid,long ri,long ci){  long i,j,ii,jj,ipp;    for (ii=0;ii<nb;ii++){    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;            ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];            for (i=0;i<intordsm[ii][jj];i++){	for (j=0;j<intordsm[ii][jj];j++){	  	  //  computation of correct stresses	  if (Mp->strcomp==1)	    Mm->compnonloc_nlstresses (ipp);	  	  ipp++;	}      }    }  }}/**   function computes nonlocal correct stresses at integration points on element      @param lcid - number of load case   @param eid - element id   @param ri,ci - row and column indices      JK, 27.11.2006*/void planeelemlq::compute_eigstress (long lcid,long eid,long ri,long ci){  long i,j,ii,jj,ipp;  vector eigstr(tncomp),sig(tncomp);  matrix d(tncomp,tncomp);    for (ii=0;ii<nb;ii++){    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;            ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];            for (i=0;i<intordsm[ii][jj];i++){	for (j=0;j<intordsm[ii][jj];j++){	  	  Mm->giveeigstrain (ipp,eigstr);	  	  //  matrix of stiffness of the material	  Mm->matstiff (d,ipp);	  	  mxv (d,eigstr,sig);	  	  Mm->storeeigstress (ipp,sig);	  	  ipp++;	}      }    }  }}/**   function integrates selected quantity over the finite element   it results in nodal values      @param iq - type of integrated quantity (see alias.h)   @param lcid - number of load case   @param eid - element id   @param ri,ci - row and column indices   @param nv - nodal values   @param x,y - node coordinates      JK, 27.11.2006*/void planeelemlq::elem_integration (integratedquant iq,long lcid,long eid,long ri,long ci,vector &nv,vector &x,vector &y){  long i,j,ii,ipp;  double xi,eta,jac,thick;  ivector nodes(nne);  vector w,gp,t(nne),ipv,contr(ndofe);  matrix gm;    Mc->give_thickness (eid,nodes,t);    fillv (0.0,nv);    for (ii=0;ii<nb;ii++){    allocv (intordsm[ii][ii],gp);    allocv (intordsm[ii][ii],w);    allocm (ncomp[ii],ndofe,gm);    allocv (ncomp[ii],ipv);        gauss_points (gp.a,w.a,intordsm[ii][ii]);    ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];        for (i=0;i<intordsm[ii][ii];i++){      xi=gp[i];      for (j=0;j<intordsm[ii][ii];j++){	eta=gp[j];	thick = approx (xi,eta,t);			switch (iq){	case locstress:{	  //  stress reading from integration point	  Mm->givestress (lcid,ipp,cncomp[ii],ipv);	  break;	}	case nonlocstress:{	  //  stress reading from integration point	  Mm->givestress (lcid,ipp,cncomp[ii],ipv);	  break;	}	case eigstress:{	  //  eigenstress reading from integration point	  Mm->giveeigstress (ipp,ncomp[ii],cncomp[ii],ipv);	  break;	}	default:{	  fprintf (stderr,"\n\n unknown type of quantity is required in function plelemqq::elem_integration (file %s, line %d).\n",__FILE__,__LINE__);	}	}			//  strain-displacement (geometric) matrix	geom_matrix_block (gm,ii,x,y,xi,eta,jac);		//  contribution to the nodal values	mtxv (gm,ipv,contr);		cmulv (jac*w[i]*w[j]*thick,contr);		//  summation	addv(contr,nv,nv);		ipp++;      }    }    destrm (gm);  destrv (ipv);  destrv (w);  destrv (gp);  }}/**   function computes contributions from eigenstrains to the right hand side      @param lcid - load case id   @param eid - element id   @param nfor - %vector of internal forces   JK, 28.7.2001*/void planeelemlq::res_eigstrain_forces (long lcid,long eid,vector &nfor){  long transf;  ivector nodes (nne);  vector v(ndofe),x(nne),y(nne);    Mt->give_node_coord2d (x,y,eid);    eigstrain_forces (lcid,eid,0,0,nfor,x,y);    //  transformation of nodal forces  //  (in the case of nodal coordinate systems)  Mt->give_elemnodes (eid,nodes);  transf = Mt->locsystems (nodes);  if (transf>0){    matrix tmat (ndofe,ndofe);    transf_matrix (nodes,tmat);    //globloctransf (nfor,v,tmat);    glvectortransf (nfor,v,tmat);    copyv (v,nfor);  }}/**   function computes contributions from eigenstrains to the right hand side      @param eid - element id   @param ri,ci - row and column indices   @param ifor - vector of nodal forces   @param x,y - vectors of nodal coordinates   JK, 28.7.2001*/void planeelemlq::eigstrain_forces (long lcid,long eid,long ri,long ci,vector &nfor,vector &x,vector &y){  integratedquant iq;  iq=eigstress;    //  computation of eigenstresses  compute_eigstress (lcid,eid,ri,ci);    //  integration of stresses over the element  elem_integration (iq,lcid,eid,ri,ci,nfor,x,y);}/**   function computes internal forces (from correct stresses)      @param lcid - number of load case   @param eid - element id   @param ri,ci - row and column indices   @param ifor - vector of internal forces   @param x,y - vectors of nodal coordinates      JK, 28.7.2001*/void planeelemlq::gl_internal_forces (long lcid,long eid,long ri,long ci,vector &ifor,vector &x,vector &y){  integratedquant iq;  iq=locstress;    //  computation of stresses  compute_nlstress (lcid,eid,ri,ci);    //  integration of stresses over the element  elem_integration (iq,lcid,eid,ri,ci,ifor,x,y);}/**   function computes internal forces (from correct stresses)      @param lcid - number of load case   @param eid - element id   @param ri,ci - row and column indices   @param ifor - vector of internal forces   @param x,y - vectors of nodal coordinates      JK, 22.9.2005*/void planeelemlq::gnl_internal_forces (long lcid,long eid,long ri,long ci,vector &ifor,vector &x,vector &y){  long i,j,k,ipp;  double xi,eta,jac,thick;  ivector cn(ndofe),nodes(nne);  vector w,gp,t(nne),sig(tncomp),contr(ndofe),r(ndofe);  matrix gm(tncomp,ndofe);    //  element nodeds  Mt->give_elemnodes (eid,nodes);  //  thickness of element  Mc->give_thickness (eid,nodes,t);  //  code numbers of element  Mt->give_code_numbers (eid,cn.a);  //  nodal displacements  eldispl (lcid,eid,r.a,cn.a,ndofe);      fillv (0.0,ifor);    //  array for coordinates of integration points  allocv (intordsm[0][0],gp);  //  array for weights of integration points  allocv (intordsm[0][0],w);    //  coordinates and weights of integration points  gauss_points (gp.a,w.a,intordsm[0][0]);    //  number of the first integration point on element  ipp=Mt->elements[eid].ipp[ri][ci];      for (i=0;i<intordsm[0][0];i++){    xi=gp[i];    for (j=0;j<intordsm[0][0];j++){      eta=gp[j];            //  thickness at integration point      thick = approx (xi,eta,t);            //  computation of stress      if (Mp->strcomp==1)	Mm->computenlstresses (ipp);            Mm->givestress (lcid,ipp,sig);            //  strain-displacement (geometric) matrix      gngeom_matrix (gm,r,x,y,xi,eta,jac);            mtxv (gm,sig,contr);            cmulv (jac*w[i]*w[j]*thick,contr);            for (k=0;k<contr.n;k++){	ifor[k]+=contr[k];      }            ipp++;    }  }    destrv (w);  destrv (gp);}/**   function computes internal forces      @param lcid - load case id   @param eid - element id   @param ifor - %vector of internal forces      JK, 22.9.2005*/void planeelemlq::res_internal_forces (long lcid,long eid,vector &ifor){  long transf;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -