⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 plelemlq.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
📖 第 1 页 / 共 4 页
字号:
#include "plelemlq.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "adaptivity.h"#include "node.h"#include "element.h"#include "intpoints.h"#include "loadcase.h"#include "gadaptivity.h"#include <stdlib.h>#include <math.h>planeelemlq::planeelemlq (void){  long i,j;    //  number nodes on element  nne=4;  //  number of DOFs on element  ndofe=8;  //  number of strain/stress components  tncomp=3;  //  number of functions approximated  napfun=2;  //  order of numerical integration of mass matrix  intordmm=2;  //  number of edges on element  ned=4;  //  number of nodes on one edge  nned=2;  //  order of numerical integration on element edges (boundaries)  intordb=2;    //  number of blocks (parts of geometric matrix)  nb=2;    //  number of strain/stress components  ncomp = new long [nb];  ncomp[0]=2;  ncomp[1]=1;    //  cumulative number of components approximated  cncomp = new long [nb];  cncomp[0]=0;  cncomp[1]=2;  //  number of integration points  //  order of numerical integration of stiffness matrix  nip = new long* [nb];  intordsm = new long* [nb];  for (i=0;i<nb;i++){    nip[i] = new long [nb];    intordsm[i] = new long [nb];  }    nip[0][0]=4;  nip[0][1]=0;  nip[1][0]=0;  nip[1][1]=1;    //  total number of integration points  tnip=0;  for (i=0;i<nb;i++){    for (j=0;j<nb;j++){      tnip+=nip[i][j];    }  }    intordsm[0][0]=2;  intordsm[0][1]=0;  intordsm[1][0]=0;  intordsm[1][1]=1;  }planeelemlq::~planeelemlq (void){  long i;    for (i=0;i<nb;i++){    delete [] nip[i];    delete [] intordsm[i];  }  delete [] nip;  delete [] intordsm;    delete [] cncomp;  delete [] ncomp;}void planeelemlq::eleminit (long eid){  long ii,jj;  Mt->elements[eid].nb=nb;  Mt->elements[eid].intordsm = new long* [nb];  Mt->elements[eid].nip = new long* [nb];  for (ii=0;ii<nb;ii++){    Mt->elements[eid].intordsm[ii] = new long [nb];    Mt->elements[eid].nip[ii] = new long [nb];    for (jj=0;jj<nb;jj++){      Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj];      Mt->elements[eid].nip[ii][jj]=nip[ii][jj];    }  }}/**   function approximates function defined by nodal values   @param xi,eta - coordinates on element   @param nodval - nodal values      JK*/double planeelemlq::approx (double xi,double eta,vector &nodval){  double f;  vector bf(nne);    bf_lin_4_2d (bf.a,xi,eta);    scprd (bf,nodval,f);  return f;}/**   function assembles coordinates of integration points      @param eid - element id   @param ipp - integration point pointer   @param ri - row index   @param ci - column index   @param ipcoord - array containing coordinates of integration points      JK, 8.5.2002*/void planeelemlq::ipcoord (long eid,long ipp,long ri,long ci,vector &coord){  long i,j,ii;  double xi,eta;  vector x(nne),y(nne),w(intordsm[ri][ci]),gp(intordsm[ri][ci]);  gauss_points (gp.a,w.a,intordsm[ri][ci]);  Mt->give_node_coord2d (x,y,eid);  ii=Mt->elements[eid].ipp[ri][ci];  for (i=0;i<intordsm[ri][ci];i++){    xi=gp[i];    for (j=0;j<intordsm[ri][ci];j++){      eta=gp[j];      if (ii==ipp){	coord[0]=approx (xi,eta,x);	coord[1]=approx (xi,eta,y);	coord[2]=0.0;      }      ii++;    }  }}/**   function assembles coordinates of integration points in block [ri][ci]      @param eid - element id   @param ri - row index   @param ci - column index   @param ipcoord - array containing coordinates of integration points      JK, 8.5.2002*/void planeelemlq::ipcoordblock (long eid,long ri,long ci,double **coord){  long i,j,k;  double xi,eta;  vector x(nne),y(nne),w(intordsm[ri][ci]),gp(intordsm[ri][ci]);    gauss_points (gp.a,w.a,intordsm[ri][ci]);  Mt->give_node_coord2d (x,y,eid);    k=0;  for (i=0;i<intordsm[ri][ci];i++){    xi=gp[i];    for (j=0;j<intordsm[ri][ci];j++){      eta=gp[j];            coord[k][0]=approx (xi,eta,x);      coord[k][1]=approx (xi,eta,y);      coord[k++][2]=0.0;    }  }}/**   function assembles %matrix of base (approximation, shape) functions      @param n - array containing %matrix   @param xi, eta - natural coordinates      JK, 9.7.2001*/void planeelemlq::bf_matrix (matrix &n,double xi,double eta){  long i,j,k;  vector bf(nne);    bf_lin_4_2d (bf.a,xi,eta);    fillm (0.0,n);  j=0;  k=1;  for (i=0;i<nne;i++){    n[0][j]=bf[i];    n[1][k]=bf[i];    j+=2;  k+=2;  }}/**   function assembles strain-displacement (geometric) %matrix      @param gm - geometric %matrix   @param x,y - array containing node coordinates   @param xi,eta - natural coordinates   @param jac - Jacobian      JK, 9.7.2001*/void planeelemlq::geom_matrix (matrix &gm,vector &x,vector &y,double xi,double eta,double &jac){  long i,i1,i2;  vector dx(nne),dy(nne);    dx_bf_lin_4_2d (dx.a,eta);  dy_bf_lin_4_2d (dy.a,xi);    derivatives_2d (dx,dy,jac,x,y,xi,eta);    fillm (0.0,gm);    i1=0;  i2=1;  for (i=0;i<nne;i++){    gm[0][i1]=dx[i];    gm[1][i2]=dy[i];    gm[2][i1]=dy[i];    gm[2][i2]=dx[i];    i1+=2;  i2+=2;  }}/**   function assembles blocks of strain-displacement (geometric) %matrix      @param gm - geometric %matrix   @param ri - row index (number of required block)   @param x,y - array containing node coordinates   @param xi,eta - natural coordinates   @param jac - Jacobian      JK, 9.7.2001*/void planeelemlq::geom_matrix_block (matrix &gm,long ri,vector &x,vector &y,double xi,double eta,double &jac){  long i,i1,i2;  vector dx(nne),dy(nne);    dx_bf_lin_4_2d (dx.a,eta);  dy_bf_lin_4_2d (dy.a,xi);    derivatives_2d (dx,dy,jac,x,y,xi,eta);    fillm (0.0,gm);    if (ri==0){    i1=0;  i2=1;    for (i=0;i<nne;i++){      gm[0][i1]=dx[i];      gm[1][i2]=dy[i];      i1+=2;  i2+=2;    }  }  if (ri==1){    i1=0;  i2=1;    for (i=0;i<nne;i++){      gm[0][i1]=dy[i];      gm[0][i2]=dx[i];      i1+=2;  i2+=2;    }  }}/**   function assembles auxiliary vectors B for evaluation of stiffness %matrix   in geometrically nonlinear problems      @param x,y - array containing node coordinates   @param xi,eta - natural coordinates   @param jac - Jacobian   @param b11,b12,b21,b22 - vectors of derivatives of shape functions      JK, 21.9.2005*/void planeelemlq::bvectors (vector &x,vector &y,double xi,double eta,double &jac,			    vector &b11,vector &b12,vector &b21,vector &b22){  vector dx(nne),dy(nne);    dx_bf_lin_4_2d (dx.a,eta);  dy_bf_lin_4_2d (dy.a,xi);    derivatives_2d (dx,dy,jac,x,y,xi,eta);    fillv (0.0,b11);  fillv (0.0,b12);  fillv (0.0,b21);  fillv (0.0,b22);  //  du/dx  b11[0]=dx[0];  b11[2]=dx[1];  b11[4]=dx[2];  b11[6]=dx[3];  //  du/dy  b12[0]=dy[0];  b12[2]=dy[1];  b12[4]=dy[2];  b12[6]=dy[3];  //  dv/dx  b21[1]=dx[0];  b21[3]=dx[1];  b21[5]=dx[2];  b21[7]=dx[3];  //  dv/dy  b22[1]=dy[0];  b22[3]=dy[1];  b22[5]=dy[2];  b22[7]=dy[3];}/**   function computes strain-displacement %matrix for geometrically nonlinear problems      @param gm - strain-displacement %matrix   @param r - array of nodal displacements   @param x,y - array containing node coordinates   @param xi,eta - natural coordinates   @param jac - Jacobian   JK, 21.9.2005*/void planeelemlq::gngeom_matrix (matrix &gm,vector &r,vector &x,vector &y,double xi,double eta,double &jac){  long i;  vector b11(ndofe),b12(ndofe),b21(ndofe),b22(ndofe),av(ndofe);  matrix am(ndofe,ndofe);    fillm (0.0,gm);    bvectors (x,y,xi,eta,jac,b11,b12,b21,b22);    // *******  //  E_11  // *******    //  B11 dr  for (i=0;i<ndofe;i++){    gm[0][i]+=b11[i];  }    //  r B11 B11 dr  vxv (b11,b11,am);  vxm (r,am,av);  for (i=0;i<ndofe;i++){    gm[0][i]+=av[i];  }    //  r B21 B21 dr  vxv (b21,b21,am);  vxm (r,am,av);  for (i=0;i<ndofe;i++){    gm[0][i]+=av[i];  }    // *******  //  E_22  // *******    //  B22 dr  for (i=0;i<ndofe;i++){    gm[1][i]+=b22[i];  }    //  r B22 B22 dr  vxv (b22,b22,am);  vxm (r,am,av);  for (i=0;i<ndofe;i++){    gm[1][i]+=av[i];  }    //  r B12 B12 dr  vxv (b12,b12,am);  vxm (r,am,av);  for (i=0;i<ndofe;i++){    gm[1][i]+=av[i];  }    // **************  //  E_12 = E_21  // **************    //  (B12 + B21) dr  for (i=0;i<ndofe;i++){    gm[2][i]+=b12[i]+b21[i];  }    //  r B11 B12 dr  vxv (b11,b12,am);  vxm (r,am,av);  for (i=0;i<ndofe;i++){    gm[2][i]+=av[i];  }    //  r B12 B11 dr  vxv (b12,b11,am);  vxm (r,am,av);  for (i=0;i<ndofe;i++){    gm[2][i]+=av[i];  }    //  r B22 B21 dr  vxv (b22,b21,am);  vxm (r,am,av);  for (i=0;i<ndofe;i++){    gm[2][i]+=av[i];  }    //  r B21 B22 dr  vxv (b21,b22,am);  vxm (r,am,av);  for (i=0;i<ndofe;i++){    gm[2][i]+=av[i];  }  }/**   function computes gradient %matrix for geometrically nonlinear problems      @param grm - gradient %matrix   @param x,y - array containing node coordinates   @param xi,eta - natural coordinates   @param jac - Jacobian   JK, 21.9.2005*/void planeelemlq::gnl_grmatrix (matrix &grm,vector &x,vector &y,double xi,double eta,double &jac){  long i;  vector b11(ndofe),b12(ndofe),b21(ndofe),b22(ndofe);    bvectors (x,y,xi,eta,jac,b11,b12,b21,b22);    for (i=0;i<ndofe;i++){    grm[0][i]=b11[i];    grm[1][i]=b12[i];    grm[2][i]=b21[i];    grm[3][i]=b22[i];  }}/**   function assembles blocks of stiffness %matrix of material      @param ri - row index   @param ci - column index   @param d - stiffness %matrix of material   @param dd - required block of stiffness %matrix of material      JK*/void planeelemlq::dmatblock (long ri,long ci,matrix &d, matrix &dd){  fillm (0.0,dd);    if (ri==0 && ci==0){    dd[0][0]=d[0][0];  dd[0][1]=d[0][1];    dd[1][0]=d[1][0];  dd[1][1]=d[1][1];  }  if (ri==0 && ci==1){    dd[0][0]=d[0][2];    dd[1][0]=d[1][2];  }  if (ri==1 && ci==0){    dd[0][0]=d[2][0];  dd[0][1]=d[2][1];  }  if (ri==1 && ci==1){    dd[0][0]=d[2][2];  }}/**   function assembles transformation %matrix from local nodal coordinate   system to the global coordinate system x_g = T x_l      @param nodes - array containing node numbers   @param tmat - transformation %matrix      JK, 9.7.2001*/void planeelemlq::transf_matrix (ivector &nod,matrix &tmat){  long i,n,m;  fillm (0.0,tmat);  n=nod.n;  m=tmat.m;  for (i=0;i<m;i++){    tmat[i][i]=1.0;  }    for (i=0;i<n;i++){    if (Mt->nodes[nod[i]].transf>0){      tmat[i*2][i*2]   = Mt->nodes[nod[i]].e1[0];    tmat[i*2][i*2+1]   = Mt->nodes[nod[i]].e2[0];      tmat[i*2+1][i*2] = Mt->nodes[nod[i]].e1[1];    tmat[i*2+1][i*2+1] = Mt->nodes[nod[i]].e2[1];    }  }}/**   function computes stiffness %matrix of plane rectangular   finite element with bilinear approximation functions      function computes stiffness %matrix for geometrically linear problems      @param eid - number of element   @param ri,ci - row and column indices   @param sm - stiffness %matrix   @param x,y - vectors of nodal coordinates      JK, 10.7.2001*/void planeelemlq::gl_stiffness_matrix (long eid,long ri,long ci,matrix &sm,vector &x,vector &y){  long i,j,ii,jj,ipp;  double xi,eta,jac,thick;  ivector nodes(nne);  vector w,gp,t(nne);  matrix gmr,gmc,dd,d(tncomp,tncomp);  Mt->give_elemnodes (eid,nodes);  Mc->give_thickness (eid,nodes,t);  fillm (0.0,sm);  for (ii=0;ii<nb;ii++){    allocm (ncomp[ii],ndofe,gmr);    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;      allocv (intordsm[ii][jj],w);      allocv (intordsm[ii][jj],gp);      allocm (ncomp[jj],ndofe,gmc);      allocm (ncomp[ii],ncomp[jj],dd);      gauss_points (gp.a,w.a,intordsm[ii][jj]);      ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];      for (i=0;i<intordsm[ii][jj];i++){	xi=gp[i];	for (j=0;j<intordsm[ii][jj];j++){	  eta=gp[j];	  //  blocks of geometric matrices	  geom_matrix_block (gmr,ii,x,y,xi,eta,jac);	  geom_matrix_block (gmc,jj,x,y,xi,eta,jac);	  //  matrix of stiffness of the material	  Mm->matstiff (d,ipp);	  //	  dmatblock (ii,jj,d,dd);	  //  thickness in integration point	  thick = approx (xi,eta,t);	  jac*=thick*w[i]*w[j];	  	  jac=fabs(jac);	  //  contribution to the stiffness matrix of the element	  bdbjac (sm,gmr,dd,gmc,jac);	  	  ipp++;	}      }            destrm (dd);  destrm (gmc);  destrv (gp);  destrv (w);    }    destrm (gmr);  }  }/**   function computes stiffness %matrix of quadrilateral finite element      function computes stiffness %matrix for geometrically nonlinear problems      @param lcid - load case id   @param eid - element id   @param ri,ci - row and column indices   @param sm - stiffness %matrix   @param x,y - vectors of nodal coordinates      JK, 21.9.2005*/void planeelemlq::gnl_stiffness_matrix (long lcid,long eid,long ri,long ci,matrix &sm,vector &x,vector &y){  long i,j,ipp;  double xi,eta,jac,jac2,thick;  ivector cn(ndofe),nodes(nne);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -