📄 plelemlq.cpp
字号:
#include "plelemlq.h"#include "global.h"#include "globmat.h"#include "genfile.h"#include "adaptivity.h"#include "node.h"#include "element.h"#include "intpoints.h"#include "loadcase.h"#include "gadaptivity.h"#include <stdlib.h>#include <math.h>planeelemlq::planeelemlq (void){ long i,j; // number nodes on element nne=4; // number of DOFs on element ndofe=8; // number of strain/stress components tncomp=3; // number of functions approximated napfun=2; // order of numerical integration of mass matrix intordmm=2; // number of edges on element ned=4; // number of nodes on one edge nned=2; // order of numerical integration on element edges (boundaries) intordb=2; // number of blocks (parts of geometric matrix) nb=2; // number of strain/stress components ncomp = new long [nb]; ncomp[0]=2; ncomp[1]=1; // cumulative number of components approximated cncomp = new long [nb]; cncomp[0]=0; cncomp[1]=2; // number of integration points // order of numerical integration of stiffness matrix nip = new long* [nb]; intordsm = new long* [nb]; for (i=0;i<nb;i++){ nip[i] = new long [nb]; intordsm[i] = new long [nb]; } nip[0][0]=4; nip[0][1]=0; nip[1][0]=0; nip[1][1]=1; // total number of integration points tnip=0; for (i=0;i<nb;i++){ for (j=0;j<nb;j++){ tnip+=nip[i][j]; } } intordsm[0][0]=2; intordsm[0][1]=0; intordsm[1][0]=0; intordsm[1][1]=1; }planeelemlq::~planeelemlq (void){ long i; for (i=0;i<nb;i++){ delete [] nip[i]; delete [] intordsm[i]; } delete [] nip; delete [] intordsm; delete [] cncomp; delete [] ncomp;}void planeelemlq::eleminit (long eid){ long ii,jj; Mt->elements[eid].nb=nb; Mt->elements[eid].intordsm = new long* [nb]; Mt->elements[eid].nip = new long* [nb]; for (ii=0;ii<nb;ii++){ Mt->elements[eid].intordsm[ii] = new long [nb]; Mt->elements[eid].nip[ii] = new long [nb]; for (jj=0;jj<nb;jj++){ Mt->elements[eid].intordsm[ii][jj]=intordsm[ii][jj]; Mt->elements[eid].nip[ii][jj]=nip[ii][jj]; } }}/** function approximates function defined by nodal values @param xi,eta - coordinates on element @param nodval - nodal values JK*/double planeelemlq::approx (double xi,double eta,vector &nodval){ double f; vector bf(nne); bf_lin_4_2d (bf.a,xi,eta); scprd (bf,nodval,f); return f;}/** function assembles coordinates of integration points @param eid - element id @param ipp - integration point pointer @param ri - row index @param ci - column index @param ipcoord - array containing coordinates of integration points JK, 8.5.2002*/void planeelemlq::ipcoord (long eid,long ipp,long ri,long ci,vector &coord){ long i,j,ii; double xi,eta; vector x(nne),y(nne),w(intordsm[ri][ci]),gp(intordsm[ri][ci]); gauss_points (gp.a,w.a,intordsm[ri][ci]); Mt->give_node_coord2d (x,y,eid); ii=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[ri][ci];i++){ xi=gp[i]; for (j=0;j<intordsm[ri][ci];j++){ eta=gp[j]; if (ii==ipp){ coord[0]=approx (xi,eta,x); coord[1]=approx (xi,eta,y); coord[2]=0.0; } ii++; } }}/** function assembles coordinates of integration points in block [ri][ci] @param eid - element id @param ri - row index @param ci - column index @param ipcoord - array containing coordinates of integration points JK, 8.5.2002*/void planeelemlq::ipcoordblock (long eid,long ri,long ci,double **coord){ long i,j,k; double xi,eta; vector x(nne),y(nne),w(intordsm[ri][ci]),gp(intordsm[ri][ci]); gauss_points (gp.a,w.a,intordsm[ri][ci]); Mt->give_node_coord2d (x,y,eid); k=0; for (i=0;i<intordsm[ri][ci];i++){ xi=gp[i]; for (j=0;j<intordsm[ri][ci];j++){ eta=gp[j]; coord[k][0]=approx (xi,eta,x); coord[k][1]=approx (xi,eta,y); coord[k++][2]=0.0; } }}/** function assembles %matrix of base (approximation, shape) functions @param n - array containing %matrix @param xi, eta - natural coordinates JK, 9.7.2001*/void planeelemlq::bf_matrix (matrix &n,double xi,double eta){ long i,j,k; vector bf(nne); bf_lin_4_2d (bf.a,xi,eta); fillm (0.0,n); j=0; k=1; for (i=0;i<nne;i++){ n[0][j]=bf[i]; n[1][k]=bf[i]; j+=2; k+=2; }}/** function assembles strain-displacement (geometric) %matrix @param gm - geometric %matrix @param x,y - array containing node coordinates @param xi,eta - natural coordinates @param jac - Jacobian JK, 9.7.2001*/void planeelemlq::geom_matrix (matrix &gm,vector &x,vector &y,double xi,double eta,double &jac){ long i,i1,i2; vector dx(nne),dy(nne); dx_bf_lin_4_2d (dx.a,eta); dy_bf_lin_4_2d (dy.a,xi); derivatives_2d (dx,dy,jac,x,y,xi,eta); fillm (0.0,gm); i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dx[i]; gm[1][i2]=dy[i]; gm[2][i1]=dy[i]; gm[2][i2]=dx[i]; i1+=2; i2+=2; }}/** function assembles blocks of strain-displacement (geometric) %matrix @param gm - geometric %matrix @param ri - row index (number of required block) @param x,y - array containing node coordinates @param xi,eta - natural coordinates @param jac - Jacobian JK, 9.7.2001*/void planeelemlq::geom_matrix_block (matrix &gm,long ri,vector &x,vector &y,double xi,double eta,double &jac){ long i,i1,i2; vector dx(nne),dy(nne); dx_bf_lin_4_2d (dx.a,eta); dy_bf_lin_4_2d (dy.a,xi); derivatives_2d (dx,dy,jac,x,y,xi,eta); fillm (0.0,gm); if (ri==0){ i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dx[i]; gm[1][i2]=dy[i]; i1+=2; i2+=2; } } if (ri==1){ i1=0; i2=1; for (i=0;i<nne;i++){ gm[0][i1]=dy[i]; gm[0][i2]=dx[i]; i1+=2; i2+=2; } }}/** function assembles auxiliary vectors B for evaluation of stiffness %matrix in geometrically nonlinear problems @param x,y - array containing node coordinates @param xi,eta - natural coordinates @param jac - Jacobian @param b11,b12,b21,b22 - vectors of derivatives of shape functions JK, 21.9.2005*/void planeelemlq::bvectors (vector &x,vector &y,double xi,double eta,double &jac, vector &b11,vector &b12,vector &b21,vector &b22){ vector dx(nne),dy(nne); dx_bf_lin_4_2d (dx.a,eta); dy_bf_lin_4_2d (dy.a,xi); derivatives_2d (dx,dy,jac,x,y,xi,eta); fillv (0.0,b11); fillv (0.0,b12); fillv (0.0,b21); fillv (0.0,b22); // du/dx b11[0]=dx[0]; b11[2]=dx[1]; b11[4]=dx[2]; b11[6]=dx[3]; // du/dy b12[0]=dy[0]; b12[2]=dy[1]; b12[4]=dy[2]; b12[6]=dy[3]; // dv/dx b21[1]=dx[0]; b21[3]=dx[1]; b21[5]=dx[2]; b21[7]=dx[3]; // dv/dy b22[1]=dy[0]; b22[3]=dy[1]; b22[5]=dy[2]; b22[7]=dy[3];}/** function computes strain-displacement %matrix for geometrically nonlinear problems @param gm - strain-displacement %matrix @param r - array of nodal displacements @param x,y - array containing node coordinates @param xi,eta - natural coordinates @param jac - Jacobian JK, 21.9.2005*/void planeelemlq::gngeom_matrix (matrix &gm,vector &r,vector &x,vector &y,double xi,double eta,double &jac){ long i; vector b11(ndofe),b12(ndofe),b21(ndofe),b22(ndofe),av(ndofe); matrix am(ndofe,ndofe); fillm (0.0,gm); bvectors (x,y,xi,eta,jac,b11,b12,b21,b22); // ******* // E_11 // ******* // B11 dr for (i=0;i<ndofe;i++){ gm[0][i]+=b11[i]; } // r B11 B11 dr vxv (b11,b11,am); vxm (r,am,av); for (i=0;i<ndofe;i++){ gm[0][i]+=av[i]; } // r B21 B21 dr vxv (b21,b21,am); vxm (r,am,av); for (i=0;i<ndofe;i++){ gm[0][i]+=av[i]; } // ******* // E_22 // ******* // B22 dr for (i=0;i<ndofe;i++){ gm[1][i]+=b22[i]; } // r B22 B22 dr vxv (b22,b22,am); vxm (r,am,av); for (i=0;i<ndofe;i++){ gm[1][i]+=av[i]; } // r B12 B12 dr vxv (b12,b12,am); vxm (r,am,av); for (i=0;i<ndofe;i++){ gm[1][i]+=av[i]; } // ************** // E_12 = E_21 // ************** // (B12 + B21) dr for (i=0;i<ndofe;i++){ gm[2][i]+=b12[i]+b21[i]; } // r B11 B12 dr vxv (b11,b12,am); vxm (r,am,av); for (i=0;i<ndofe;i++){ gm[2][i]+=av[i]; } // r B12 B11 dr vxv (b12,b11,am); vxm (r,am,av); for (i=0;i<ndofe;i++){ gm[2][i]+=av[i]; } // r B22 B21 dr vxv (b22,b21,am); vxm (r,am,av); for (i=0;i<ndofe;i++){ gm[2][i]+=av[i]; } // r B21 B22 dr vxv (b21,b22,am); vxm (r,am,av); for (i=0;i<ndofe;i++){ gm[2][i]+=av[i]; } }/** function computes gradient %matrix for geometrically nonlinear problems @param grm - gradient %matrix @param x,y - array containing node coordinates @param xi,eta - natural coordinates @param jac - Jacobian JK, 21.9.2005*/void planeelemlq::gnl_grmatrix (matrix &grm,vector &x,vector &y,double xi,double eta,double &jac){ long i; vector b11(ndofe),b12(ndofe),b21(ndofe),b22(ndofe); bvectors (x,y,xi,eta,jac,b11,b12,b21,b22); for (i=0;i<ndofe;i++){ grm[0][i]=b11[i]; grm[1][i]=b12[i]; grm[2][i]=b21[i]; grm[3][i]=b22[i]; }}/** function assembles blocks of stiffness %matrix of material @param ri - row index @param ci - column index @param d - stiffness %matrix of material @param dd - required block of stiffness %matrix of material JK*/void planeelemlq::dmatblock (long ri,long ci,matrix &d, matrix &dd){ fillm (0.0,dd); if (ri==0 && ci==0){ dd[0][0]=d[0][0]; dd[0][1]=d[0][1]; dd[1][0]=d[1][0]; dd[1][1]=d[1][1]; } if (ri==0 && ci==1){ dd[0][0]=d[0][2]; dd[1][0]=d[1][2]; } if (ri==1 && ci==0){ dd[0][0]=d[2][0]; dd[0][1]=d[2][1]; } if (ri==1 && ci==1){ dd[0][0]=d[2][2]; }}/** function assembles transformation %matrix from local nodal coordinate system to the global coordinate system x_g = T x_l @param nodes - array containing node numbers @param tmat - transformation %matrix JK, 9.7.2001*/void planeelemlq::transf_matrix (ivector &nod,matrix &tmat){ long i,n,m; fillm (0.0,tmat); n=nod.n; m=tmat.m; for (i=0;i<m;i++){ tmat[i][i]=1.0; } for (i=0;i<n;i++){ if (Mt->nodes[nod[i]].transf>0){ tmat[i*2][i*2] = Mt->nodes[nod[i]].e1[0]; tmat[i*2][i*2+1] = Mt->nodes[nod[i]].e2[0]; tmat[i*2+1][i*2] = Mt->nodes[nod[i]].e1[1]; tmat[i*2+1][i*2+1] = Mt->nodes[nod[i]].e2[1]; } }}/** function computes stiffness %matrix of plane rectangular finite element with bilinear approximation functions function computes stiffness %matrix for geometrically linear problems @param eid - number of element @param ri,ci - row and column indices @param sm - stiffness %matrix @param x,y - vectors of nodal coordinates JK, 10.7.2001*/void planeelemlq::gl_stiffness_matrix (long eid,long ri,long ci,matrix &sm,vector &x,vector &y){ long i,j,ii,jj,ipp; double xi,eta,jac,thick; ivector nodes(nne); vector w,gp,t(nne); matrix gmr,gmc,dd,d(tncomp,tncomp); Mt->give_elemnodes (eid,nodes); Mc->give_thickness (eid,nodes,t); fillm (0.0,sm); for (ii=0;ii<nb;ii++){ allocm (ncomp[ii],ndofe,gmr); for (jj=0;jj<nb;jj++){ if (intordsm[ii][jj]==0) continue; allocv (intordsm[ii][jj],w); allocv (intordsm[ii][jj],gp); allocm (ncomp[jj],ndofe,gmc); allocm (ncomp[ii],ncomp[jj],dd); gauss_points (gp.a,w.a,intordsm[ii][jj]); ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; for (i=0;i<intordsm[ii][jj];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][jj];j++){ eta=gp[j]; // blocks of geometric matrices geom_matrix_block (gmr,ii,x,y,xi,eta,jac); geom_matrix_block (gmc,jj,x,y,xi,eta,jac); // matrix of stiffness of the material Mm->matstiff (d,ipp); // dmatblock (ii,jj,d,dd); // thickness in integration point thick = approx (xi,eta,t); jac*=thick*w[i]*w[j]; jac=fabs(jac); // contribution to the stiffness matrix of the element bdbjac (sm,gmr,dd,gmc,jac); ipp++; } } destrm (dd); destrm (gmc); destrv (gp); destrv (w); } destrm (gmr); } }/** function computes stiffness %matrix of quadrilateral finite element function computes stiffness %matrix for geometrically nonlinear problems @param lcid - load case id @param eid - element id @param ri,ci - row and column indices @param sm - stiffness %matrix @param x,y - vectors of nodal coordinates JK, 21.9.2005*/void planeelemlq::gnl_stiffness_matrix (long lcid,long eid,long ri,long ci,matrix &sm,vector &x,vector &y){ long i,j,ipp; double xi,eta,jac,jac2,thick; ivector cn(ndofe),nodes(nne);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -