📄 linhex_nb1.cpp
字号:
ivector nodes(nne),cn(ndofe); vector x(nne),y(nne),z(nne),w,gp,r(ndofe),eps(tncomp),sig,contr(ndofe),v(ndofe); matrix gm,tmat (ndofe,ndofe); Mt->give_node_coord3d (x,y,z,eid); Mt->give_code_numbers (eid,cn.a); eldispl (lcid,eid,r.a,cn.a,ndofe); // transformation of nodal displacements Mt->give_elemnodes (eid,nodes); transf = Mt->locsystems (nodes); if (transf>0){ transf_matrix (nodes,tmat); copyv (r,v); locglobtransf (r,v,tmat); } fillv (0.0,ifor); for (ii=0;ii<nb;ii++){ if (intordsm[ii][ii]==0) continue; allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocm (ncomp[ii],ndofe,gm); allocv (ncomp[ii],sig); gauss_points (gp.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; for (k=0;k<intordsm[ii][ii];k++){ zeta=gp[k]; geom_matrix (gm,x,y,z,xi,eta,zeta,jac); mxv (gm,r,eps); Mm->storestrain (lcid,ipp,eps); Mm->computenlstresses (ipp); Mm->givestress (lcid,ipp,cncomp[ii],ncomp[ii],sig); geom_matrix (gm,x,y,z,xi,eta,zeta,jac); mtxv (gm,sig,contr); cmulv (jac*w[i]*w[j]*w[k],contr); for (l=0;l<contr.n;l++){ ifor[l]+=contr[l]; } ipp++; } } } destrv (sig); destrm (gm); destrv (w); destrv (gp); } // transformation of nodal forces if (transf>0){ transf_matrix (nodes,tmat); globloctransf (ifor,v,tmat); copyv (v,ifor); } }/** function computes internal forces (from correct stresses) @param lcid - number of load case @param eid - element id @param ri,ci - row and column indices @param ifor - %vector of internal forces JK, 24.9.2005*/void linhex::gnl_internal_forces (long lcid,long eid,long ri,long ci,vector &ifor){ long i,j,k,l,ipp; double xi,eta,zeta,jac; ivector cn(ndofe); vector w,gp,x(nne),y(nne),z(nne),sig(tncomp),contr(ndofe),r(ndofe); matrix gm(tncomp,ndofe); // node coordinates Mt->give_node_coord3d (x,y,z,eid); // code numbers of element Mt->give_code_numbers (eid,cn.a); // nodal displacements eldispl (lcid,eid,r.a,cn.a,ndofe); fillv (0.0,ifor); // array for coordinates of integration points allocv (intordsm[0][0],gp); // array for weights of integration points allocv (intordsm[0][0],w); // coordinates and weights of integration points gauss_points (gp.a,w.a,intordsm[0][0]); // number of the first integration point on element ipp=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[0][0];i++){ xi=gp[i]; for (j=0;j<intordsm[0][0];j++){ eta=gp[j]; for (k=0;k<intordsm[0][0];k++){ zeta=gp[k]; // computation of stress if (Mp->strcomp==1) Mm->computenlstresses (ipp); Mm->givestress (lcid,ipp,sig); // strain-displacement (geometric) matrix gngeom_matrix (gm,r,x,y,z,xi,eta,zeta,jac); mtxv (gm,sig,contr); cmulv (jac*w[i]*w[j]*w[k],contr); for (l=0;l<contr.n;l++){ ifor[l]+=contr[l]; } ipp++; } } } destrv (w); destrv (gp);}void linhex::res_internal_forces (long lcid,long eid,vector &ifor){ gl_internal_forces (lcid,eid,0,0,ifor); //gnl_internal_forces (lcid,eid,0,0,ifor);}/** function computes internal forces @param lcid - number of load case @param eid - element id @param ri,ci - row and column indices @param ifor - vector of internal forces 28.7.2001*/void linhex::local_values (long lcid,long eid,long ri,long ci){ long i,j,k,ii,ipp; double xi,eta,zeta; double **stra; vector w,gp,eps(tncomp); matrix gm; stra = new double* [nne]; for (i=0;i<nne;i++){ stra[i] = new double [tncomp]; } //elem_strains (stra,lcid,eid,ri,ci); for (ii=0;ii<nb;ii++){ if (intordsm[ii][ii]==0) continue; allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); gauss_points (gp.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; for (k=0;k<intordsm[ii][ii];k++){ zeta=gp[k]; //appval (xi,eta,zeta,0,tncomp,eps,stra); Mm->storestrain (lcid,ipp,eps); Mm->computenlstresses (ipp); ipp++; } } } destrv (w); destrv (gp); } for (i=0;i<nne;i++){ delete [] stra[i]; } delete [] stra;}/** function computes internal forces @param lcid - number of load case @param eid - element id @param ri,ci - row and column indices @param ifor - vector of internal forces 28.7.2001*/void linhex::nonloc_internal_forces (long lcid,long eid,long ri,long ci,vector &ifor){ long i,j,k,l,ii,ipp; double xi,eta,zeta,jac; vector x(nne),y(nne),z(nne),w,gp,sig,contr(ndofe); matrix gm; Mt->give_node_coord3d (x,y,z,eid); fillv (0.0,ifor); for (ii=0;ii<nb;ii++){ if (intordsm[ii][ii]==0) continue; allocv (intordsm[ii][ii],gp); allocv (intordsm[ii][ii],w); allocm (ncomp[ii],ndofe,gm); allocv (ncomp[ii],sig); gauss_points (gp.a,w.a,intordsm[ii][ii]); ipp=Mt->elements[eid].ipp[ri+ii][ci+ii]; for (i=0;i<intordsm[ii][ii];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][ii];j++){ eta=gp[j]; for (k=0;k<intordsm[ii][ii];k++){ zeta=gp[k]; Mm->compnonloc_nlstresses (ipp); Mm->givestress (lcid,ipp,cncomp[ii],ncomp[ii],sig); geom_matrix (gm,x,y,z,xi,eta,zeta,jac); mtxv (gm,sig,contr); cmulv (jac*w[i]*w[j]*w[k],contr); for (l=0;l<contr.n;l++){ ifor[l]+=contr[l]; } ipp++; } } } destrv (sig); destrm (gm); destrv (w); destrv (gp); }}/** function returns coordinates of integration points @param eid - element id @param ipp - integration point pointer @param coord - vector of coordinates 10.1.2002*/void linhex::ipcoord (long eid,long ipp,long ri,long ci,vector &coord){ long i,j,k,ii; double xi,eta,zeta; vector x(nne),y(nne),z(nne),w(intordsm[ri][ci]),gp(intordsm[ri][ci]); gauss_points (gp.a,w.a,intordsm[ri][ci]); Mt->give_node_coord3d (x,y,z,eid); ii=Mt->elements[eid].ipp[ri][ci]; for (i=0;i<intordsm[ri][ci];i++){ xi=gp[i]; for (j=0;j<intordsm[ri][ci];j++){ eta=gp[j]; for (k=0;k<intordsm[ri][ci];k++){ zeta=gp[k]; if (ii==ipp){ coord[0]=approx (xi,eta,zeta,x); coord[1]=approx (xi,eta,zeta,y); coord[2]=approx (xi,eta,zeta,z); } ii++; } } }}void linhex::inicipval(long eid, long ri, long ci, matrix &nodval, inictype *ictn){ long i, j, k, l, m, ipp; long ii, jj, nv = nodval.n; long nstra; double xi, eta, zeta, ipval; vector w, gp, anv(nne); nstra = 0; for (j = 0; j < nv; j++) // for all initial values { for(i = 0; i < nne; i++) // for all nodes on element anv[i] = nodval[i][j]; for (ii = 0; ii < nb; ii++) { for (jj = 0; jj < nb; jj++) { ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; if (intordsm[ii][jj] == 0) continue; allocv (intordsm[ii][jj],gp); allocv (intordsm[ii][jj],w); gauss_points (gp.a,w.a,intordsm[ii][jj]); for (k = 0; k < intordsm[ii][jj]; k++) { xi=gp[k]; for (l = 0; l < intordsm[ii][jj]; l++) { eta=gp[l]; for (m = 0; m < intordsm[ii][jj]; m++) { zeta=gp[m]; // value in integration point ipval = approx (xi,eta,zeta,anv); if ((ictn[i] & inistrain) && (j < Mm->ip[ipp].ncompstr)) { Mm->ip[ipp].strain[j] += ipval; ipp++; continue; } if ((ictn[i] & inistress) && (j < nstra + Mm->ip[ipp].ncompstr)) { Mm->ip[ipp].stress[j] += ipval; ipp++; continue; } if ((ictn[i] & iniother) && (j < nv)) { Mm->ip[ipp].other[j] += ipval; ipp++; continue; } ipp++; } } } destrv (gp); destrv (w); } } if (ictn[i] & inistrain) nstra++; }}/** function computes volume appropriate to integration point 2.3.2004, JK*/void linhex::ipvolume (long eid,long ri,long ci){ long i,j,k,ii,jj,ipp; double xi,eta,zeta,jac; vector x(nne),y(nne),z(nne),w,gp; Mt->give_node_coord3d (x,y,z,eid); for (ii=0;ii<nb;ii++){ for (jj=0;jj<nb;jj++){ if (intordsm[ii][jj]==0) continue; allocv (intordsm[ii][jj],w); allocv (intordsm[ii][jj],gp); gauss_points (gp.a,w.a,intordsm[ii][jj]); ipp=Mt->elements[eid].ipp[ri+ii][ci+jj]; for (i=0;i<intordsm[ii][jj];i++){ xi=gp[i]; for (j=0;j<intordsm[ii][jj];j++){ eta=gp[j]; for (k=0;k<intordsm[ii][jj];k++){ zeta=gp[k]; jac_3d (jac,x,y,z,xi,eta,zeta); jac=fabs(jac); jac*=w[i]*w[j]*w[k]; Mm->storeipvol (ipp,jac); ipp++; } } } destrv (gp); destrv (w); } } }/** function computes nodal forces caused by presure on surface @param eid - element id @param ri,ci - row and column indices @param nfor - vector of presure @param eis - surface id 27.1.2006*/void linhex::node_forces_surf (long lcid,long eid,long *is,double *nv,vector &nf){ long i,j; double xi,eta,zeta,jac; double *tnv; vector x(nne),y(nne),z(nne),gp,w,av(ndofe),v(ndofe); matrix n(napfun,ndofe),an(napfun,ndofe),am(ndofe,ndofe),tran(3,3); tnv = new double [12]; // coordinates of element nodes Mt->give_node_coord3d (x,y,z,eid); allocv (intordb,w); allocv (intordb,gp); gauss_points (gp.a,w.a,intordb); // surface number 1 if (is[0]>0 ){ xi=1.0; for (i=0;i<intordb;i++){ eta=gp[i]; for (j=0;j<intordb;j++){ zeta=gp[j]; jac2d_3d (jac,x,y,z,eta,zeta,0); bf_matrix (n,xi,eta,zeta); jac = jac*w[i]*w[j]; nnj (am.a,n.a,jac,n.m,n.n); } } if (is[0]==1){ av[0] = nv[0*3+0]; av[1] = nv[0*3+1]; av[2] = nv[0*3+2]; av[9] = nv[1*3+0]; av[10] = nv[1*3+1]; av[11] = nv[1*3+2]; av[21] = nv[2*3+0]; av[22] = nv[2*3+1]; av[23] = nv[2*3+2]; av[12] = nv[3*3+0]; av[13] = nv[3*3+1]; av[14] = nv[3*3+2]; } if (is[0]==2){ av[0] = nv[0*3+0]; av[1] = nv[0*3+1]; av[2] = nv[0*3+2]; av[3] = nv[1*3+0]; av[4] = nv[1*3+1]; av[5] = nv[1*3+2]; av[6] = nv[2*3+0]; av[7] = nv[2*3+1]; av[8] = nv[2*3+2]; av[9] = nv[3*3+0]; av[10] = nv[3*3+1]; av[11] = nv[3*3+2]; locglob_nodeval (0,av,tnv,x,y,z); av[0] = tnv[0*3+0]; av[1] = tnv[0*3+1]; av[2] = tnv[0*3+2]; av[9] = tnv[1*3+0]; av[10] = tnv[1*3+1]; av[11] = tnv[1*3+2]; av[21] = tnv[2*3+0]; av[22] = tnv[2*3+1]; av[23] = tnv[2*3+2]; av[12] = tnv[3*3+0]; av[13] = tnv[3*3+1]; av[14] = tnv[3*3+2]; } mxv (am,av,v); addv (v,nf,nf); } // surface number 2 if (is[1]>0 ){ eta=1.0; for (i=0;i<intordb;i++){ xi=gp[i]; for (j=0;j<intordb;j++){ zeta=gp[j]; jac2d_3d (jac,x,y,z,xi,zeta,1); bf_matrix (n,xi,eta,zeta); jac = jac*w[i]*w[j]; nnj (am.a,n.a,jac,n.m,n.n); } } if (is[1]==1){ av[3] = nv[12+0*3+0]; av[4] = nv[12+0*3+1]; av[5] = nv[12+0*3+2]; av[0] = nv[12+1*3+0]; av[1] = nv[12+1*3+1]; av[2] = nv[12+1*3+2]; av[12] = nv[12+2*3+0]; av[13] = nv[12+2*3+1]; av[14] = nv[12+2*3+2]; av[15] = nv[12+3*3+0]; av[16] = nv[12+3*3+1]; av[17] = nv[12+3*3+2]; } if (is[1]==2){ av[0] = nv[12+0*3+0]; av[1] = nv[12+0*3+1]; av[2] = nv[12+0*3+2]; av[3] = nv[12+1*3+0]; av[4] = nv[12+1*3+1]; av[5] = nv[12+1*3+2]; av[6] = nv[12+2*3+0]; av[7] = nv[12+2*3+1]; av[8] = nv[12+2*3+2]; av[9] = nv[12+3*3+0]; av[10] = nv[12+3*3+1]; av[11] = nv[12+3*3+2]; locglob_nodeval (1,av,tnv,x,y,z); av[3] = tnv[0*3+0]; av[4] = tnv[0*3+1]; av[5] = tnv[0*3+2]; av[0] = tnv[1*3+0]; av[1] = tnv[1*3+1]; av[2] = tnv[1*3+2]; av[12] = tnv[2*3+0]; av[13] = tnv[2*3+1]; av[14] = tnv[2*3+2]; av[15] = tnv[3*3+0]; av[16] = tnv[3*3+1]; av[17] = tnv[3*3+2]; } mxv (am,av,v); addv (v,nf,nf); } // surface number 3 if (is[2]>0 ){ xi=-1.0; for (i=0;i<intordb;i++){ eta=gp[i];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -