⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 linhex_nb1.cpp

📁 Finite element program for mechanical problem. It can solve various problem in solid problem
💻 CPP
📖 第 1 页 / 共 5 页
字号:
  ivector nodes(nne),cn(ndofe);  vector x(nne),y(nne),z(nne),w,gp,r(ndofe),eps(tncomp),sig,contr(ndofe),v(ndofe);  matrix gm,tmat (ndofe,ndofe);  Mt->give_node_coord3d (x,y,z,eid);  Mt->give_code_numbers (eid,cn.a);  eldispl (lcid,eid,r.a,cn.a,ndofe);      //  transformation of nodal displacements  Mt->give_elemnodes (eid,nodes);  transf = Mt->locsystems (nodes);  if (transf>0){    transf_matrix (nodes,tmat);    copyv (r,v);    locglobtransf (r,v,tmat);  }      fillv (0.0,ifor);    for (ii=0;ii<nb;ii++){    if (intordsm[ii][ii]==0)  continue;        allocv (intordsm[ii][ii],gp);    allocv (intordsm[ii][ii],w);    allocm (ncomp[ii],ndofe,gm);    allocv (ncomp[ii],sig);        gauss_points (gp.a,w.a,intordsm[ii][ii]);    ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];        for (i=0;i<intordsm[ii][ii];i++){      xi=gp[i];      for (j=0;j<intordsm[ii][ii];j++){	eta=gp[j];	for (k=0;k<intordsm[ii][ii];k++){	  zeta=gp[k];	  	  geom_matrix (gm,x,y,z,xi,eta,zeta,jac);	  	  mxv (gm,r,eps);	  	  Mm->storestrain (lcid,ipp,eps);	  	  Mm->computenlstresses (ipp);	  	  Mm->givestress (lcid,ipp,cncomp[ii],ncomp[ii],sig);	  	  geom_matrix (gm,x,y,z,xi,eta,zeta,jac);	  mtxv (gm,sig,contr);	  	  cmulv (jac*w[i]*w[j]*w[k],contr);	  	  for (l=0;l<contr.n;l++){	    ifor[l]+=contr[l];	  }	  	  ipp++;	}      }    }    destrv (sig);  destrm (gm);  destrv (w);  destrv (gp);  }    //  transformation of nodal forces  if (transf>0){    transf_matrix (nodes,tmat);    globloctransf (ifor,v,tmat);    copyv (v,ifor);  }  }/**   function computes internal forces (from correct stresses)      @param lcid - number of load case   @param eid - element id   @param ri,ci - row and column indices   @param ifor - %vector of internal forces      JK, 24.9.2005*/void linhex::gnl_internal_forces (long lcid,long eid,long ri,long ci,vector &ifor){  long i,j,k,l,ipp;  double xi,eta,zeta,jac;  ivector cn(ndofe);  vector w,gp,x(nne),y(nne),z(nne),sig(tncomp),contr(ndofe),r(ndofe);  matrix gm(tncomp,ndofe);    //  node coordinates  Mt->give_node_coord3d (x,y,z,eid);  //  code numbers of element  Mt->give_code_numbers (eid,cn.a);  //  nodal displacements  eldispl (lcid,eid,r.a,cn.a,ndofe);      fillv (0.0,ifor);    //  array for coordinates of integration points  allocv (intordsm[0][0],gp);  //  array for weights of integration points  allocv (intordsm[0][0],w);    //  coordinates and weights of integration points  gauss_points (gp.a,w.a,intordsm[0][0]);    //  number of the first integration point on element  ipp=Mt->elements[eid].ipp[ri][ci];      for (i=0;i<intordsm[0][0];i++){    xi=gp[i];    for (j=0;j<intordsm[0][0];j++){      eta=gp[j];      for (k=0;k<intordsm[0][0];k++){	zeta=gp[k];		//  computation of stress	if (Mp->strcomp==1)	  Mm->computenlstresses (ipp);		Mm->givestress (lcid,ipp,sig);		//  strain-displacement (geometric) matrix	gngeom_matrix (gm,r,x,y,z,xi,eta,zeta,jac);		mtxv (gm,sig,contr);		cmulv (jac*w[i]*w[j]*w[k],contr);		for (l=0;l<contr.n;l++){	  ifor[l]+=contr[l];	}		ipp++;      }    }  }  destrv (w);  destrv (gp);}void linhex::res_internal_forces (long lcid,long eid,vector &ifor){  gl_internal_forces (lcid,eid,0,0,ifor);  //gnl_internal_forces (lcid,eid,0,0,ifor);}/**   function computes internal forces   @param lcid - number of load case   @param eid - element id   @param ri,ci - row and column indices   @param ifor - vector of internal forces      28.7.2001*/void linhex::local_values (long lcid,long eid,long ri,long ci){  long i,j,k,ii,ipp;  double xi,eta,zeta;  double **stra;  vector w,gp,eps(tncomp);  matrix gm;  stra = new double* [nne];  for (i=0;i<nne;i++){    stra[i] = new double [tncomp];  }  //elem_strains (stra,lcid,eid,ri,ci);  for (ii=0;ii<nb;ii++){    if (intordsm[ii][ii]==0)  continue;    allocv (intordsm[ii][ii],gp);    allocv (intordsm[ii][ii],w);        gauss_points (gp.a,w.a,intordsm[ii][ii]);    ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];        for (i=0;i<intordsm[ii][ii];i++){      xi=gp[i];      for (j=0;j<intordsm[ii][ii];j++){	eta=gp[j];	for (k=0;k<intordsm[ii][ii];k++){	  zeta=gp[k];	  	  //appval (xi,eta,zeta,0,tncomp,eps,stra);	  	  Mm->storestrain (lcid,ipp,eps);	  	  Mm->computenlstresses (ipp);	  	  ipp++;	}      }    }    destrv (w);  destrv (gp);  }  for (i=0;i<nne;i++){    delete [] stra[i];  }  delete [] stra;}/**   function computes internal forces   @param lcid - number of load case   @param eid - element id   @param ri,ci - row and column indices   @param ifor - vector of internal forces      28.7.2001*/void linhex::nonloc_internal_forces (long lcid,long eid,long ri,long ci,vector &ifor){  long i,j,k,l,ii,ipp;  double xi,eta,zeta,jac;  vector x(nne),y(nne),z(nne),w,gp,sig,contr(ndofe);  matrix gm;  Mt->give_node_coord3d (x,y,z,eid);    fillv (0.0,ifor);  for (ii=0;ii<nb;ii++){    if (intordsm[ii][ii]==0)  continue;    allocv (intordsm[ii][ii],gp);    allocv (intordsm[ii][ii],w);    allocm (ncomp[ii],ndofe,gm);    allocv (ncomp[ii],sig);        gauss_points (gp.a,w.a,intordsm[ii][ii]);    ipp=Mt->elements[eid].ipp[ri+ii][ci+ii];        for (i=0;i<intordsm[ii][ii];i++){      xi=gp[i];      for (j=0;j<intordsm[ii][ii];j++){	eta=gp[j];	for (k=0;k<intordsm[ii][ii];k++){	  zeta=gp[k];	  	  Mm->compnonloc_nlstresses (ipp);	  	  Mm->givestress (lcid,ipp,cncomp[ii],ncomp[ii],sig);	  	  geom_matrix (gm,x,y,z,xi,eta,zeta,jac);	  mtxv (gm,sig,contr);	  	  cmulv (jac*w[i]*w[j]*w[k],contr);	  	  for (l=0;l<contr.n;l++){	    ifor[l]+=contr[l];	  }	  	  ipp++;	}      }    }    destrv (sig);  destrm (gm);  destrv (w);  destrv (gp);  }}/**   function returns coordinates of integration points      @param eid - element id   @param ipp - integration point pointer   @param coord - vector of coordinates      10.1.2002*/void linhex::ipcoord (long eid,long ipp,long ri,long ci,vector &coord){  long i,j,k,ii;  double xi,eta,zeta;  vector x(nne),y(nne),z(nne),w(intordsm[ri][ci]),gp(intordsm[ri][ci]);    gauss_points (gp.a,w.a,intordsm[ri][ci]);  Mt->give_node_coord3d (x,y,z,eid);  ii=Mt->elements[eid].ipp[ri][ci];    for (i=0;i<intordsm[ri][ci];i++){    xi=gp[i];    for (j=0;j<intordsm[ri][ci];j++){      eta=gp[j];      for (k=0;k<intordsm[ri][ci];k++){	zeta=gp[k];	if (ii==ipp){	  coord[0]=approx (xi,eta,zeta,x);	  coord[1]=approx (xi,eta,zeta,y);	  coord[2]=approx (xi,eta,zeta,z);	}	ii++;      }    }  }}void linhex::inicipval(long eid, long ri, long ci, matrix &nodval, inictype *ictn){  long i, j, k, l, m, ipp;  long ii, jj, nv = nodval.n;  long nstra;  double xi, eta, zeta, ipval;  vector w, gp, anv(nne);  nstra = 0;  for (j = 0; j < nv; j++) // for all initial values  {    for(i = 0; i < nne; i++) // for all nodes on element      anv[i] = nodval[i][j];    for (ii = 0; ii < nb; ii++)    {      for (jj = 0; jj < nb; jj++)      {        ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];        if (intordsm[ii][jj] == 0)          continue;        allocv (intordsm[ii][jj],gp);        allocv (intordsm[ii][jj],w);        gauss_points (gp.a,w.a,intordsm[ii][jj]);        for (k = 0; k < intordsm[ii][jj]; k++)        {          xi=gp[k];          for (l = 0; l < intordsm[ii][jj]; l++)          {            eta=gp[l];            for (m = 0; m < intordsm[ii][jj]; m++)            {              zeta=gp[m];              //  value in integration point              ipval = approx (xi,eta,zeta,anv);              if ((ictn[i] & inistrain) && (j < Mm->ip[ipp].ncompstr))              {                Mm->ip[ipp].strain[j] += ipval;                ipp++;                continue;              }              if ((ictn[i] & inistress) && (j < nstra + Mm->ip[ipp].ncompstr))              {                Mm->ip[ipp].stress[j] += ipval;                ipp++;                continue;              }              if ((ictn[i] & iniother) && (j < nv))              {                Mm->ip[ipp].other[j] += ipval;                ipp++;                continue;              }              ipp++;            }          }        }        destrv (gp);  destrv (w);      }    }    if (ictn[i] & inistrain) nstra++;  }}/**   function computes volume appropriate to integration point      2.3.2004, JK*/void linhex::ipvolume (long eid,long ri,long ci){  long i,j,k,ii,jj,ipp;  double xi,eta,zeta,jac;  vector x(nne),y(nne),z(nne),w,gp;    Mt->give_node_coord3d (x,y,z,eid);    for (ii=0;ii<nb;ii++){    for (jj=0;jj<nb;jj++){      if (intordsm[ii][jj]==0)  continue;      allocv (intordsm[ii][jj],w);      allocv (intordsm[ii][jj],gp);            gauss_points (gp.a,w.a,intordsm[ii][jj]);            ipp=Mt->elements[eid].ipp[ri+ii][ci+jj];            for (i=0;i<intordsm[ii][jj];i++){	xi=gp[i];	for (j=0;j<intordsm[ii][jj];j++){	  eta=gp[j];	  for (k=0;k<intordsm[ii][jj];k++){	    zeta=gp[k];	    	    jac_3d (jac,x,y,z,xi,eta,zeta);	    jac=fabs(jac);	    	    jac*=w[i]*w[j]*w[k];	    	    Mm->storeipvol (ipp,jac);	    ipp++;	  }	}      }      destrv (gp);  destrv (w);    }  }  }/**   function computes nodal forces caused by presure on surface      @param eid - element id   @param ri,ci - row and column indices   @param nfor - vector of presure    @param eis - surface id       27.1.2006*/void linhex::node_forces_surf (long lcid,long eid,long *is,double *nv,vector &nf){  long i,j;  double xi,eta,zeta,jac;  double *tnv;  vector x(nne),y(nne),z(nne),gp,w,av(ndofe),v(ndofe);  matrix n(napfun,ndofe),an(napfun,ndofe),am(ndofe,ndofe),tran(3,3);    tnv = new double [12];  //  coordinates of element nodes  Mt->give_node_coord3d (x,y,z,eid);    allocv (intordb,w);  allocv (intordb,gp);  gauss_points (gp.a,w.a,intordb);    //  surface number 1  if (is[0]>0 ){    xi=1.0;    for (i=0;i<intordb;i++){      eta=gp[i];      for (j=0;j<intordb;j++){	zeta=gp[j];		jac2d_3d (jac,x,y,z,eta,zeta,0);	bf_matrix (n,xi,eta,zeta);	jac = jac*w[i]*w[j];	nnj (am.a,n.a,jac,n.m,n.n);      }    }        if (is[0]==1){      av[0] = nv[0*3+0];      av[1] = nv[0*3+1];      av[2] = nv[0*3+2];            av[9] = nv[1*3+0];      av[10] = nv[1*3+1];      av[11] = nv[1*3+2];            av[21] = nv[2*3+0];      av[22] = nv[2*3+1];      av[23] = nv[2*3+2];      av[12] = nv[3*3+0];      av[13] = nv[3*3+1];      av[14] = nv[3*3+2];    }    if (is[0]==2){            av[0] = nv[0*3+0];      av[1] = nv[0*3+1];      av[2] = nv[0*3+2];            av[3] = nv[1*3+0];      av[4] = nv[1*3+1];      av[5] = nv[1*3+2];            av[6] = nv[2*3+0];      av[7] = nv[2*3+1];      av[8] = nv[2*3+2];      av[9]  = nv[3*3+0];      av[10] = nv[3*3+1];      av[11] = nv[3*3+2];            locglob_nodeval (0,av,tnv,x,y,z);            av[0] = tnv[0*3+0];      av[1] = tnv[0*3+1];      av[2] = tnv[0*3+2];            av[9] = tnv[1*3+0];      av[10] = tnv[1*3+1];      av[11] = tnv[1*3+2];            av[21] = tnv[2*3+0];      av[22] = tnv[2*3+1];      av[23] = tnv[2*3+2];      av[12] = tnv[3*3+0];      av[13] = tnv[3*3+1];      av[14] = tnv[3*3+2];    }    mxv (am,av,v);    addv (v,nf,nf);  }  //  surface number 2  if (is[1]>0 ){    eta=1.0;    for (i=0;i<intordb;i++){      xi=gp[i];      for (j=0;j<intordb;j++){	zeta=gp[j];		jac2d_3d (jac,x,y,z,xi,zeta,1);	bf_matrix (n,xi,eta,zeta);	jac = jac*w[i]*w[j];	nnj (am.a,n.a,jac,n.m,n.n);      }    }        if (is[1]==1){      av[3] = nv[12+0*3+0];      av[4] = nv[12+0*3+1];      av[5] = nv[12+0*3+2];            av[0] = nv[12+1*3+0];      av[1] = nv[12+1*3+1];      av[2] = nv[12+1*3+2];            av[12] = nv[12+2*3+0];      av[13] = nv[12+2*3+1];      av[14] = nv[12+2*3+2];      av[15] = nv[12+3*3+0];      av[16] = nv[12+3*3+1];      av[17] = nv[12+3*3+2];    }    if (is[1]==2){            av[0] = nv[12+0*3+0];      av[1] = nv[12+0*3+1];      av[2] = nv[12+0*3+2];            av[3] = nv[12+1*3+0];      av[4] = nv[12+1*3+1];      av[5] = nv[12+1*3+2];            av[6] = nv[12+2*3+0];      av[7] = nv[12+2*3+1];      av[8] = nv[12+2*3+2];      av[9]  = nv[12+3*3+0];      av[10] = nv[12+3*3+1];      av[11] = nv[12+3*3+2];            locglob_nodeval (1,av,tnv,x,y,z);            av[3] = tnv[0*3+0];      av[4] = tnv[0*3+1];      av[5] = tnv[0*3+2];            av[0] = tnv[1*3+0];      av[1] = tnv[1*3+1];      av[2] = tnv[1*3+2];            av[12] = tnv[2*3+0];      av[13] = tnv[2*3+1];      av[14] = tnv[2*3+2];      av[15] = tnv[3*3+0];      av[16] = tnv[3*3+1];      av[17] = tnv[3*3+2];    }    mxv (am,av,v);    addv (v,nf,nf);  }  //  surface number 3  if (is[2]>0 ){    xi=-1.0;    for (i=0;i<intordb;i++){      eta=gp[i];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -